2022-07-01 更新
CoMoGAN: continuous model-guided image-to-image translation
Authors:Fabio Pizzati, Pietro Cerri, Raoul de Charette
CoMoGAN is a continuous GAN relying on the unsupervised reorganization of the target data on a functional manifold. To that matter, we introduce a new Functional Instance Normalization layer and residual mechanism, which together disentangle image content from position on target manifold. We rely on naive physics-inspired models to guide the training while allowing private model/translations features. CoMoGAN can be used with any GAN backbone and allows new types of image translation, such as cyclic image translation like timelapse generation, or detached linear translation. On all datasets, it outperforms the literature. Our code is available at http://github.com/cv-rits/CoMoGAN .
PDF CVPR 2021 oral
点此查看论文截图
Cut Inner Layers: A Structured Pruning Strategy for Efficient U-Net GANs
Authors:Bo-Kyeong Kim, Shinkook Choi, Hancheol Park
Pruning effectively compresses overparameterized models. Despite the success of pruning methods for discriminative models, applying them for generative models has been relatively rarely approached. This study conducts structured pruning on U-Net generators of conditional GANs. A per-layer sensitivity analysis confirms that many unnecessary filters exist in the innermost layers near the bottleneck and can be substantially pruned. Based on this observation, we prune these filters from multiple inner layers or suggest alternative architectures by completely eliminating the layers. We evaluate our approach with Pix2Pix for image-to-image translation and Wav2Lip for speech-driven talking face generation. Our method outperforms global pruning baselines, demonstrating the importance of properly considering where to prune for U-Net generators.
PDF ICML Workshop on Hardware Aware Efficient Training, 2022
点此查看论文截图
Copy Motion From One to Another: Fake Motion Video Generation
Authors:Zhenguang Liu, Sifan Wu, Chejian Xu, Xiang Wang, Lei Zhu, Shuang Wu, Fuli Feng
One compelling application of artificial intelligence is to generate a video of a target person performing arbitrary desired motion (from a source person). While the state-of-the-art methods are able to synthesize a video demonstrating similar broad stroke motion details, they are generally lacking in texture details. A pertinent manifestation appears as distorted face, feet, and hands, and such flaws are very sensitively perceived by human observers. Furthermore, current methods typically employ GANs with a L2 loss to assess the authenticity of the generated videos, inherently requiring a large amount of training samples to learn the texture details for adequate video generation. In this work, we tackle these challenges from three aspects: 1) We disentangle each video frame into foreground (the person) and background, focusing on generating the foreground to reduce the underlying dimension of the network output. 2) We propose a theoretically motivated Gromov-Wasserstein loss that facilitates learning the mapping from a pose to a foreground image. 3) To enhance texture details, we encode facial features with geometric guidance and employ local GANs to refine the face, feet, and hands. Extensive experiments show that our method is able to generate realistic target person videos, faithfully copying complex motions from a source person. Our code and datasets are released at https://github.com/Sifann/FakeMotion
PDF 9 pages, 4 figures
点此查看论文截图
CTrGAN: Cycle Transformers GAN for Gait Transfer
Authors:Shahar Mahpod, Noam Gaash, G. Ben-Artzi
We attempt for the first time to address the problem of gait transfer. In contrast to motion transfer, the objective here is not to imitate the source’s normal motions, but rather to transform the source’s motion into a typical gait pattern for the target. Using gait recognition models, we demonstrate that existing techniques yield a discrepancy that can be easily detected. We introduce a novel model, Cycle Transformers GAN (CTrGAN), that can successfully generate the target’s natural gait. CTrGAN’s generators consist of a decoder and encoder, both Transformers, where the attention is on the temporal domain between complete images rather than the spatial domain between patches. While recent Transformer studies in computer vision mainly focused on discriminative tasks, we introduce an architecture that can be applied to synthesis tasks. Using a widely-used gait recognition dataset, we demonstrate that our approach is capable of producing over an order of magnitude more realistic personalized gaits than existing methods, even when used with sources that were not available during training.
PDF
点此查看论文截图
SoloGAN: Multi-domain Multimodal Unpaired Image-to-Image Translation via a Single Generative Adversarial Network
Authors:Shihua Huang, Cheng He, Ran Cheng
Despite significant advances in image-to-image (I2I) translation with generative adversarial networks (GANs), it remains challenging to effectively translate an image to a set of diverse images in multiple target domains using a single pair of generator and discriminator. Existing I2I translation methods adopt multiple domain-specific content encoders for different domains, where each domain-specific content encoder is trained with images from the same domain only. Nevertheless, we argue that the content (domain-invariance) features should be learned from images among all of the domains. Consequently, each domain-specific content encoder of existing schemes fails to extract the domain-invariant features efficiently. To address this issue, we present a flexible and general SoloGAN model for efficient multimodal I2I translation among multiple domains with unpaired data. In contrast to existing methods, the SoloGAN algorithm uses a single projection discriminator with an additional auxiliary classifier and shares the encoder and generator for all domains. Consequently, the SoloGAN can be trained effectively with images from all domains such that the domain-invariance content representation can be efficiently extracted. Qualitative and quantitative results over a wide range of datasets against several counterparts and variants of the SoloGAN demonstrate the merits of the method, especially for challenging I2I translation datasets, i.e., datasets involving extreme shape variations or need to keep the complex backgrounds unchanged after translations. Furthermore, we demonstrate the contribution of each component in SoloGAN by ablation studies.
PDF pages 14, 15 figures
点此查看论文截图
Improving Correlation Capture in Generating Imbalanced Data using Differentially Private Conditional GANs
Authors:Chang Sun, Johan van Soest, Michel Dumontier
Despite the remarkable success of Generative Adversarial Networks (GANs) on text, images, and videos, generating high-quality tabular data is still under development owing to some unique challenges such as capturing dependencies in imbalanced data, optimizing the quality of synthetic patient data while preserving privacy. In this paper, we propose DP-CGANS, a differentially private conditional GAN framework consisting of data transformation, sampling, conditioning, and networks training to generate realistic and privacy-preserving tabular data. DP-CGANS distinguishes categorical and continuous variables and transforms them to latent space separately. Then, we structure a conditional vector as an additional input to not only presents the minority class in the imbalanced data, but also capture the dependency between variables. We inject statistical noise to the gradients in the networking training process of DP-CGANS to provide a differential privacy guarantee. We extensively evaluate our model with state-of-the-art generative models on three public datasets and two real-world personal health datasets in terms of statistical similarity, machine learning performance, and privacy measurement. We demonstrate that our model outperforms other comparable models, especially in capturing dependency between variables. Finally, we present the balance between data utility and privacy in synthetic data generation considering the different data structure and characteristics of real-world datasets such as imbalance variables, abnormal distributions, and sparsity of data.
PDF