2022-06-28 更新
GeoCLR: Georeference Contrastive Learning for Efficient Seafloor Image Interpretation
Authors:Takaki Yamada, Adam Prügel-Bennett, Stefan B. Williams, Oscar Pizarro, Blair Thornton
This paper describes Georeference Contrastive Learning of visual Representation (GeoCLR) for efficient training of deep-learning Convolutional Neural Networks (CNNs). The method leverages georeference information by generating a similar image pair using images taken of nearby locations, and contrasting these with an image pair that is far apart. The underlying assumption is that images gathered within a close distance are more likely to have similar visual appearance, where this can be reasonably satisfied in seafloor robotic imaging applications where image footprints are limited to edge lengths of a few metres and are taken so that they overlap along a vehicle’s trajectory, whereas seafloor substrates and habitats have patch sizes that are far larger. A key advantage of this method is that it is self-supervised and does not require any human input for CNN training. The method is computationally efficient, where results can be generated between dives during multi-day AUV missions using computational resources that would be accessible during most oceanic field trials. We apply GeoCLR to habitat classification on a dataset that consists of ~86k images gathered using an Autonomous Underwater Vehicle (AUV). We demonstrate how the latent representations generated by GeoCLR can be used to efficiently guide human annotation efforts, where the semi-supervised framework improves classification accuracy by an average of 10.2% compared to the state-of-the-art SimCLR using the same CNN and equivalent number of human annotations for training.
PDF 30 pages, 9 figures
点此查看论文截图
Lesion-Aware Contrastive Representation Learning for Histopathology Whole Slide Images Analysis
Authors:Jun Li, Yushan Zheng, Kun Wu, Jun Shi, Fengying Xie, Zhiguo Jiang
Local representation learning has been a key challenge to promote the performance of the histopathological whole slide images analysis. The previous representation learning methods followed the supervised learning paradigm. However, manual annotation for large-scale WSIs is time-consuming and labor-intensive. Hence, the self-supervised contrastive learning has recently attracted intensive attention. The present contrastive learning methods treat each sample as a single class, which suffers from class collision problems, especially in the domain of histopathology image analysis. In this paper, we proposed a novel contrastive representation learning framework named Lesion-Aware Contrastive Learning (LACL) for histopathology whole slide image analysis. We built a lesion queue based on the memory bank structure to store the representations of different classes of WSIs, which allowed the contrastive model to selectively define the negative pairs during the training. Moreover, We designed a queue refinement strategy to purify the representations stored in the lesion queue. The experimental results demonstrate that LACL achieves the best performance in histopathology image representation learning on different datasets, and outperforms state-of-the-art methods under different WSI classification benchmarks. The code is available at https://github.com/junl21/lacl.
PDF accepted for MICCAI 2022
点此查看论文截图
Stain based contrastive co-training for histopathological image analysis
Authors:Bodong Zhang, Beatrice Knudsen, Deepika Sirohi, Alessandro Ferrero, Tolga Tasdizen
We propose a novel semi-supervised learning approach for classification of histopathology images. We employ strong supervision with patch-level annotations combined with a novel co-training loss to create a semi-supervised learning framework. Co-training relies on multiple conditionally independent and sufficient views of the data. We separate the hematoxylin and eosin channels in pathology images using color deconvolution to create two views of each slide that can partially fulfill these requirements. Two separate CNNs are used to embed the two views into a joint feature space. We use a contrastive loss between the views in this feature space to implement co-training. We evaluate our approach in clear cell renal cell and prostate carcinomas, and demonstrate improvement over state-of-the-art semi-supervised learning methods.
PDF
点此查看论文截图
Vision Transformer for Contrastive Clustering
Authors:Hua-Bao Ling, Bowen Zhu, Dong Huang, Ding-Hua Chen, Chang-Dong Wang, Jian-Huang Lai
Vision Transformer (ViT) has shown its advantages over the convolutional neural network (CNN) with its ability to capture global long-range dependencies for visual representation learning. Besides ViT, contrastive learning is another popular research topic recently. While previous contrastive learning works are mostly based on CNNs, some latest studies have attempted to jointly model the ViT and the contrastive learning for enhanced self-supervised learning. Despite the considerable progress, these combinations of ViT and contrastive learning mostly focus on the instance-level contrastiveness, which often overlook the contrastiveness of the global clustering structures and also lack the ability to directly learn the clustering result (e.g., for images). In view of this, this paper presents an end-to-end deep image clustering approach termed Vision Transformer for Contrastive Clustering (VTCC), which for the first time, to the best of our knowledge, unifies the Transformer and the contrastive learning for the image clustering task. Specifically, with two random augmentations performed on each image in a mini-batch, we utilize a ViT encoder with two weight-sharing views as the backbone to learn the representations for the augmented samples. To remedy the potential instability of the ViT, we incorporate a convolutional stem, which uses multiple stacked small convolutions instead of a big convolution in the patch projection layer, to split each augmented sample into a sequence of patches. With representations learned via the backbone, an instance projector and a cluster projector are further utilized for the instance-level contrastive learning and the global clustering structure learning, respectively. Extensive experiments on eight image datasets demonstrate the stability (during the training-from-scratch) and the superiority (in clustering performance) of VTCC over the state-of-the-art.
PDF
点此查看论文截图
2022-06-28 更新
Contrastive Learning of Features between Images and LiDAR
Authors:Peng Jiang, Srikanth Saripalli
Image and Point Clouds provide different information for robots. Finding the correspondences between data from different sensors is crucial for various tasks such as localization, mapping, and navigation. Learning-based descriptors have been developed for single sensors; there is little work on cross-modal features. This work treats learning cross-modal features as a dense contrastive learning problem. We propose a Tuple-Circle loss function for cross-modality feature learning. Furthermore, to learn good features and not lose generality, we developed a variant of widely used PointNet++ architecture for point cloud and U-Net CNN architecture for images. Moreover, we conduct experiments on a real-world dataset to show the effectiveness of our loss function and network structure. We show that our models indeed learn information from both images as well as LiDAR by visualizing the features.
PDF accepted in CASE2022