Vision Transformer


2022-06-28 更新

RestoreFormer: High-Quality Blind Face Restoration from Undegraded Key-Value Pairs

Authors:Zhouxia Wang, Jiawei Zhang, Runjian Chen, Wenping Wang, Ping Luo

Blind face restoration is to recover a high-quality face image from unknown degradations. As face image contains abundant contextual information, we propose a method, RestoreFormer, which explores fully-spatial attentions to model contextual information and surpasses existing works that use local operators. RestoreFormer has several benefits compared to prior arts. First, unlike the conventional multi-head self-attention in previous Vision Transformers (ViTs), RestoreFormer incorporates a multi-head cross-attention layer to learn fully-spatial interactions between corrupted queries and high-quality key-value pairs. Second, the key-value pairs in ResotreFormer are sampled from a reconstruction-oriented high-quality dictionary, whose elements are rich in high-quality facial features specifically aimed for face reconstruction, leading to superior restoration results. Third, RestoreFormer outperforms advanced state-of-the-art methods on one synthetic dataset and three real-world datasets, as well as produces images with better visual quality.
PDF Accepted by CVPR 2022

点此查看论文截图

Vision Transformer for Contrastive Clustering

Authors:Hua-Bao Ling, Bowen Zhu, Dong Huang, Ding-Hua Chen, Chang-Dong Wang, Jian-Huang Lai

Vision Transformer (ViT) has shown its advantages over the convolutional neural network (CNN) with its ability to capture global long-range dependencies for visual representation learning. Besides ViT, contrastive learning is another popular research topic recently. While previous contrastive learning works are mostly based on CNNs, some latest studies have attempted to jointly model the ViT and the contrastive learning for enhanced self-supervised learning. Despite the considerable progress, these combinations of ViT and contrastive learning mostly focus on the instance-level contrastiveness, which often overlook the contrastiveness of the global clustering structures and also lack the ability to directly learn the clustering result (e.g., for images). In view of this, this paper presents an end-to-end deep image clustering approach termed Vision Transformer for Contrastive Clustering (VTCC), which for the first time, to the best of our knowledge, unifies the Transformer and the contrastive learning for the image clustering task. Specifically, with two random augmentations performed on each image in a mini-batch, we utilize a ViT encoder with two weight-sharing views as the backbone to learn the representations for the augmented samples. To remedy the potential instability of the ViT, we incorporate a convolutional stem, which uses multiple stacked small convolutions instead of a big convolution in the patch projection layer, to split each augmented sample into a sequence of patches. With representations learned via the backbone, an instance projector and a cluster projector are further utilized for the instance-level contrastive learning and the global clustering structure learning, respectively. Extensive experiments on eight image datasets demonstrate the stability (during the training-from-scratch) and the superiority (in clustering performance) of VTCC over the state-of-the-art.
PDF

点此查看论文截图

2022-06-28 更新

SemMAE: Semantic-Guided Masking for Learning Masked Autoencoders

Authors:Gang Li, Heliang Zheng, Daqing Liu, Chaoyue Wang, Bing Su, Changwen Zheng

Recently, significant progress has been made in masked image modeling to catch up to masked language modeling. However, unlike words in NLP, the lack of semantic decomposition of images still makes masked autoencoding (MAE) different between vision and language. In this paper, we explore a potential visual analogue of words, i.e., semantic parts, and we integrate semantic information into the training process of MAE by proposing a Semantic-Guided Masking strategy. Compared to widely adopted random masking, our masking strategy can gradually guide the network to learn various information, i.e., from intra-part patterns to inter-part relations. In particular, we achieve this in two steps. 1) Semantic part learning: we design a self-supervised part learning method to obtain semantic parts by leveraging and refining the multi-head attention of a ViT-based encoder. 2) Semantic-guided MAE (SemMAE) training: we design a masking strategy that varies from masking a portion of patches in each part to masking a portion of (whole) parts in an image. Extensive experiments on various vision tasks show that SemMAE can learn better image representation by integrating semantic information. In particular, SemMAE achieves 84.5% fine-tuning accuracy on ImageNet-1k, which outperforms the vanilla MAE by 1.4%. In the semantic segmentation and fine-grained recognition tasks, SemMAE also brings significant improvements and yields the state-of-the-art performance.
PDF 12 pages, 3 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录