2022-06-27 更新
Towards Galaxy Foundation Models with Hybrid Contrastive Learning
Authors:Mike Walmsley, Inigo Val Slijepcevic, Micah Bowles, Anna M. M. Scaife
New astronomical tasks are often related to earlier tasks for which labels have already been collected. We adapt the contrastive framework BYOL to leverage those labels as a pretraining task while also enforcing augmentation invariance. For large-scale pretraining, we introduce GZ-Evo v0.1, a set of 96.5M volunteer responses for 552k galaxy images plus a further 1.34M comparable unlabelled galaxies. Most of the 206 GZ-Evo answers are unknown for any given galaxy, and so our pretraining task uses a Dirichlet loss that naturally handles unknown answers. GZ-Evo pretraining, with or without hybrid learning, improves on direct training even with plentiful downstream labels (+4% accuracy with 44k labels). Our hybrid pretraining/contrastive method further improves downstream accuracy vs. pretraining or contrastive learning, especially in the low-label transfer regime (+6% accuracy with 750 labels).
PDF Accepted at the ICML 2022 Workshop on Machine Learning for Astrophysics. Data: www.github.com/mwalmsley/pytorch-galaxy-datasets. Please reach out to share your labelled data - all contributions will be credited in future work
论文截图
Provable Guarantees for Self-Supervised Deep Learning with Spectral Contrastive Loss
Authors:Jeff Z. HaoChen, Colin Wei, Adrien Gaidon, Tengyu Ma
Recent works in self-supervised learning have advanced the state-of-the-art by relying on the contrastive learning paradigm, which learns representations by pushing positive pairs, or similar examples from the same class, closer together while keeping negative pairs far apart. Despite the empirical successes, theoretical foundations are limited — prior analyses assume conditional independence of the positive pairs given the same class label, but recent empirical applications use heavily correlated positive pairs (i.e., data augmentations of the same image). Our work analyzes contrastive learning without assuming conditional independence of positive pairs using a novel concept of the augmentation graph on data. Edges in this graph connect augmentations of the same data, and ground-truth classes naturally form connected sub-graphs. We propose a loss that performs spectral decomposition on the population augmentation graph and can be succinctly written as a contrastive learning objective on neural net representations. Minimizing this objective leads to features with provable accuracy guarantees under linear probe evaluation. By standard generalization bounds, these accuracy guarantees also hold when minimizing the training contrastive loss. Empirically, the features learned by our objective can match or outperform several strong baselines on benchmark vision datasets. In all, this work provides the first provable analysis for contrastive learning where guarantees for linear probe evaluation can apply to realistic empirical settings.
PDF Accepted as an oral to NeurIPS 2021