2022-06-26 更新
Learning Fair Representation via Distributional Contrastive Disentanglement
Authors:Changdae Oh, Heeji Won, Junhyuk So, Taero Kim, Yewon Kim, Hosik Choi, Kyungwoo Song
Learning fair representation is crucial for achieving fairness or debiasing sensitive information. Most existing works rely on adversarial representation learning to inject some invariance into representation. However, adversarial learning methods are known to suffer from relatively unstable training, and this might harm the balance between fairness and predictiveness of representation. We propose a new approach, learning FAir Representation via distributional CONtrastive Variational AutoEncoder (FarconVAE), which induces the latent space to be disentangled into sensitive and nonsensitive parts. We first construct the pair of observations with different sensitive attributes but with the same labels. Then, FarconVAE enforces each non-sensitive latent to be closer, while sensitive latents to be far from each other and also far from the non-sensitive latent by contrasting their distributions. We provide a new type of contrastive loss motivated by Gaussian and Student-t kernels for distributional contrastive learning with theoretical analysis. Besides, we adopt a new swap-reconstruction loss to boost the disentanglement further. FarconVAE shows superior performance on fairness, pretrained model debiasing, and domain generalization tasks from various modalities, including tabular, image, and text.
PDF Accepted by KDD 2022 (Research Track)
论文截图
TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning
Authors:Jiachen Zhu, Rafael M. Moraes, Serkan Karakulak, Vlad Sobol, Alfredo Canziani, Yann LeCun
We present Transformation Invariance and Covariance Contrast (TiCo) for self-supervised visual representation learning. Similar to other recent self-supervised learning methods, our method is based on maximizing the agreement among embeddings of different distorted versions of the same image, which pushes the encoder to produce transformation invariant representations. To avoid the trivial solution where the encoder generates constant vectors, we regularize the covariance matrix of the embeddings from different images by penalizing low rank solutions. By jointly minimizing the transformation invariance loss and covariance contrast loss, we get an encoder that is able to produce useful representations for downstream tasks. We analyze our method and show that it can be viewed as a variant of MoCo with an implicit memory bank of unlimited size at no extra memory cost. This makes our method perform better than alternative methods when using small batch sizes. TiCo can also be seen as a modification of Barlow Twins. By connecting the contrastive and redundancy-reduction methods together, TiCo gives us new insights into how joint embedding methods work.
PDF
论文截图
Explaining Image Classifiers Using Contrastive Counterfactuals in Generative Latent Spaces
Authors:Kamran Alipour, Aditya Lahiri, Ehsan Adeli, Babak Salimi, Michael Pazzani
Despite their high accuracies, modern complex image classifiers cannot be trusted for sensitive tasks due to their unknown decision-making process and potential biases. Counterfactual explanations are very effective in providing transparency for these black-box algorithms. Nevertheless, generating counterfactuals that can have a consistent impact on classifier outputs and yet expose interpretable feature changes is a very challenging task. We introduce a novel method to generate causal and yet interpretable counterfactual explanations for image classifiers using pretrained generative models without any re-training or conditioning. The generative models in this technique are not bound to be trained on the same data as the target classifier. We use this framework to obtain contrastive and causal sufficiency and necessity scores as global explanations for black-box classifiers. On the task of face attribute classification, we show how different attributes influence the classifier output by providing both causal and contrastive feature attributions, and the corresponding counterfactual images.
PDF
论文截图
ClamNet: Using contrastive learning with variable depth Unets for medical image segmentation
Authors:Samayan Bhattacharya, Sk Shahnawaz, Avigyan Bhattacharya
Unets have become the standard method for semantic segmentation of medical images, along with fully convolutional networks (FCN). Unet++ was introduced as a variant of Unet, in order to solve some of the problems facing Unet and FCNs. Unet++ provided networks with an ensemble of variable depth Unets, hence eliminating the need for professionals estimating the best suitable depth for a task. While Unet and all its variants, including Unet++ aimed at providing networks that were able to train well without requiring large quantities of annotated data, none of them attempted to eliminate the need for pixel-wise annotated data altogether. Obtaining such data for each disease to be diagnosed comes at a high cost. Hence such data is scarce. In this paper we use contrastive learning to train Unet++ for semantic segmentation of medical images using medical images from various sources including magnetic resonance imaging (MRI) and computed tomography (CT), without the need for pixel-wise annotations. Here we describe the architecture of the proposed model and the training method used. This is still a work in progress and so we abstain from including results in this paper. The results and the trained model would be made available upon publication or in subsequent versions of this paper on arxiv.
PDF
论文截图
DU-Net based Unsupervised Contrastive Learning for Cancer Segmentation in Histology Images
Authors:Yilong Li, Yaqi Wang, Huiyu Zhou, Huaqiong Wang, Gangyong Jia, Qianni Zhang
In this paper, we introduce an unsupervised cancer segmentation framework for histology images. The framework involves an effective contrastive learning scheme for extracting distinctive visual representations for segmentation. The encoder is a Deep U-Net (DU-Net) structure that contains an extra fully convolution layer compared to the normal U-Net. A contrastive learning scheme is developed to solve the problem of lacking training sets with high-quality annotations on tumour boundaries. A specific set of data augmentation techniques are employed to improve the discriminability of the learned colour features from contrastive learning. Smoothing and noise elimination are conducted using convolutional Conditional Random Fields. The experiments demonstrate competitive performance in segmentation even better than some popular supervised networks.
PDF arXiv admin note: text overlap with arXiv:2002.05709 by other authors