2022-06-26 更新
Face Anti-Spoofing by Learning Polarization Cues in a Real-World Scenario
Authors:Yu Tian, Kunbo Zhang, Leyuan Wang, Zhenan Sun
Face anti-spoofing is the key to preventing security breaches in biometric recognition applications. Existing software-based and hardware-based face liveness detection methods are effective in constrained environments or designated datasets only. Deep learning method using RGB and infrared images demands a large amount of training data for new attacks. In this paper, we present a face anti-spoofing method in a real-world scenario by automatic learning the physical characteristics in polarization images of a real face compared to a deceptive attack. A computational framework is developed to extract and classify the unique face features using convolutional neural networks and SVM together. Our real-time polarized face anti-spoofing (PAAS) detection method uses a on-chip integrated polarization imaging sensor with optimized processing algorithms. Extensive experiments demonstrate the advantages of the PAAS technique to counter diverse face spoofing attacks (print, replay, mask) in uncontrolled indoor and outdoor conditions by learning polarized face images of 33 people. A four-directional polarized face image dataset is released to inspire future applications within biometric anti-spoofing field.
PDF 14pages,8figures
论文截图
Exposing Fine-grained Adversarial Vulnerability of Face Anti-spoofing Models
Authors:Songlin Yang, Wei Wang, Chenye Xu, Bo Peng, Jing Dong
Adversarial attacks seriously threaten the high accuracy of face anti-spoofing models. Little adversarial noise can perturb their classification of live and spoofing. The existing adversarial attacks fail to figure out which part of the target face anti-spoofing model is vulnerable, making adversarial analysis tricky. So we propose fine-grained attacks for exposing adversarial vulnerability of face anti-spoofing models. Firstly, we propose Semantic Feature Augmentation (SFA) module, which makes adversarial noise semantic-aware to live and spoofing features. SFA considers the contrastive classes of data and texture bias of models in the context of face anti-spoofing, increasing the attack success rate by nearly 40% on average. Secondly, we generate fine-grained adversarial examples based on SFA and the multitask network with auxiliary information. We evaluate three annotations (facial attributes, spoofing types and illumination) and two geometric maps (depth and reflection), on four backbone networks (VGG, Resnet, Densenet and Swin Transformer). We find that facial attributes annotation and state-of-art networks fail to guarantee that models are robust to adversarial attacks. Such adversarial attacks can be generalized to more auxiliary information and backbone networks, to help our community handle the trade-off between accuracy and adversarial robustness.
PDF
论文截图
A temporal chrominance trigger for clean-label backdoor attack against anti-spoof rebroadcast detection
Authors:Wei Guo, Benedetta Tondi, Mauro Barni
We propose a stealthy clean-label video backdoor attack against Deep Learning (DL)-based models aiming at detecting a particular class of spoofing attacks, namely video rebroadcast attacks. The injected backdoor does not affect spoofing detection in normal conditions, but induces a misclassification in the presence of a specific triggering signal. The proposed backdoor relies on a temporal trigger altering the average chrominance of the video sequence. The backdoor signal is designed by taking into account the peculiarities of the Human Visual System (HVS) to reduce the visibility of the trigger, thus increasing the stealthiness of the backdoor. To force the network to look at the presence of the trigger in the challenging clean-label scenario, we choose the poisoned samples used for the injection of the backdoor following a so-called Outlier Poisoning Strategy (OPS). According to OPS, the triggering signal is inserted in the training samples that the network finds more difficult to classify. The effectiveness of the proposed backdoor attack and its generality are validated experimentally on different datasets and anti-spoofing rebroadcast detection architectures.
PDF