Anti-Spoofing


2022-06-25 更新

Efficient Anomaly Detection Using Self-Supervised Multi-Cue Tasks

Authors:Loic Jezequel, Ngoc-Son Vu, Jean Beaudet, Aymeric Histace

Anomaly detection is important in many real-life applications. Recently, self-supervised learning has greatly helped deep anomaly detection by recognizing several geometric transformations. However these methods lack finer features, usually highly depend on the anomaly type, and do not perform well on fine-grained problems. To address these issues, we first introduce in this work three novel and efficient discriminative and generative tasks which have complementary strength: (i) a piece-wise jigsaw puzzle task focuses on structure cues; (ii) a tint rotation recognition is used within each piece, taking into account the colorimetry information; (iii) and a partial re-colorization task considers the image texture. In order to make the re-colorization task more object-oriented than background-oriented, we propose to include the contextual color information of the image border via an attention mechanism. We then present a new out-of-distribution detection function and highlight its better stability compared to existing methods. Along with it, we also experiment different score fusion functions. Finally, we evaluate our method on an extensive protocol composed of various anomaly types, from object anomalies, style anomalies with fine-grained classification to local anomalies with face anti-spoofing datasets. Our model significantly outperforms state-of-the-art with up to 36% relative error improvement on object anomalies and 40% on face anti-spoofing problems.
PDF

论文截图

Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth Uncertainty Learning

Authors:Hangtong Wu, Dan Zen, Yibo Hu, Hailin Shi, Tao Mei

Face anti-spoofing (FAS) plays a vital role in preventing face recognition systems from presentation attacks. Existing face anti-spoofing datasets lack diversity due to the insufficient identity and insignificant variance, which limits the generalization ability of FAS model. In this paper, we propose Dual Spoof Disentanglement Generation (DSDG) framework to tackle this challenge by “anti-spoofing via generation”. Depending on the interpretable factorized latent disentanglement in Variational Autoencoder (VAE), DSDG learns a joint distribution of the identity representation and the spoofing pattern representation in the latent space. Then, large-scale paired live and spoofing images can be generated from random noise to boost the diversity of the training set. However, some generated face images are partially distorted due to the inherent defect of VAE. Such noisy samples are hard to predict precise depth values, thus may obstruct the widely-used depth supervised optimization. To tackle this issue, we further introduce a lightweight Depth Uncertainty Module (DUM), which alleviates the adverse effects of noisy samples by depth uncertainty learning. DUM is developed without extra-dependency, thus can be flexibly integrated with any depth supervised network for face anti-spoofing. We evaluate the effectiveness of the proposed method on five popular benchmarks and achieve state-of-the-art results under both intra- and inter- test settings. The codes are available at https://github.com/JDAI-CV/FaceX-Zoo/tree/main/addition_module/DSDG.
PDF Accepted to TCSVT, arXiv version. The codes are available at https://github.com/JDAI-CV/FaceX-Zoo/tree/main/addition_module/DSDG

论文截图

Learning Multiple Explainable and Generalizable Cues for Face Anti-spoofing

Authors:Ying Bian, Peng Zhang, Jingjing Wang, Chunmao Wang, Shiliang Pu

Although previous CNN based face anti-spoofing methods have achieved promising performance under intra-dataset testing, they suffer from poor generalization under cross-dataset testing. The main reason is that they learn the network with only binary supervision, which may learn arbitrary cues overfitting on the training dataset. To make the learned feature explainable and more generalizable, some researchers introduce facial depth and reflection map as the auxiliary supervision. However, many other generalizable cues are unexplored for face anti-spoofing, which limits their performance under cross-dataset testing. To this end, we propose a novel framework to learn multiple explainable and generalizable cues (MEGC) for face anti-spoofing. Specifically, inspired by the process of human decision, four mainly used cues by humans are introduced as auxiliary supervision including the boundary of spoof medium, moir\’e pattern, reflection artifacts and facial depth in addition to the binary supervision. To avoid extra labelling cost, corresponding synthetic methods are proposed to generate these auxiliary supervision maps. Extensive experiments on public datasets validate the effectiveness of these cues, and state-of-the-art performances are achieved by our proposed method.
PDF Camera Ready, ICASSP 2022

论文截图

Generalizable Method for Face Anti-Spoofing with Semi-Supervised Learning

Authors:Nikolay Sergievskiy, Roman Vlasov, Roman Trusov

Face anti-spoofing has drawn a lot of attention due to the high security requirements in biometric authentication systems. Bringing face biometric to commercial hardware became mostly dependent on developing reliable methods for detecting fake login sessions without specialized sensors. Current CNN-based method perform well on the domains they were trained for, but often show poor generalization on previously unseen datasets. In this paper we describe a method for utilizing unsupervised pretraining for improving performance across multiple datasets without any adaptation, introduce the Entry Antispoofing Dataset for supervised fine-tuning, and propose a multi-class auxiliary classification layer for augmenting the binary classification task of detecting spoofing attempts with explicit interpretable signals. We demonstrate the efficiency of our model by achieving state-of-the-art results on cross-dataset testing on MSU-MFSD, Replay-Attack, and OULU-NPU datasets.
PDF

论文截图

PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition

Authors:Chien-Yi Wang, Yu-Ding Lu, Shang-Ta Yang, Shang-Hong Lai

Face anti-spoofing (FAS) plays a critical role in securing face recognition systems from different presentation attacks. Previous works leverage auxiliary pixel-level supervision and domain generalization approaches to address unseen spoof types. However, the local characteristics of image captures, i.e., capturing devices and presenting materials, are ignored in existing works and we argue that such information is required for networks to discriminate between live and spoof images. In this work, we propose PatchNet which reformulates face anti-spoofing as a fine-grained patch-type recognition problem. To be specific, our framework recognizes the combination of capturing devices and presenting materials based on the patches cropped from non-distorted face images. This reformulation can largely improve the data variation and enforce the network to learn discriminative feature from local capture patterns. In addition, to further improve the generalization ability of the spoof feature, we propose the novel Asymmetric Margin-based Classification Loss and Self-supervised Similarity Loss to regularize the patch embedding space. Our experimental results verify our assumption and show that the model is capable of recognizing unseen spoof types robustly by only looking at local regions. Moreover, the fine-grained and patch-level reformulation of FAS outperforms the existing approaches on intra-dataset, cross-dataset, and domain generalization benchmarks. Furthermore, our PatchNet framework can enable practical applications like Few-Shot Reference-based FAS and facilitate future exploration of spoof-related intrinsic cues.
PDF CVPR 2022

论文截图

Meta-Teacher For Face Anti-Spoofing

Authors:Yunxiao Qin, Zitong Yu, Longbin Yan, Zezheng Wang, Chenxu Zhao, Zhen Lei

Face anti-spoofing (FAS) secures face recognition from presentation attacks (PAs). Existing FAS methods usually supervise PA detectors with handcrafted binary or pixel-wise labels. However, handcrafted labels may are not the most adequate way to supervise PA detectors learning sufficient and intrinsic spoofing cues. Instead of using the handcrafted labels, we propose a novel Meta-Teacher FAS (MT-FAS) method to train a meta-teacher for supervising PA detectors more effectively. The meta-teacher is trained in a bi-level optimization manner to learn the ability to supervise the PA detectors learning rich spoofing cues. The bi-level optimization contains two key components: 1) a lower-level training in which the meta-teacher supervises the detector’s learning process on the training set; and 2) a higher-level training in which the meta-teacher’s teaching performance is optimized by minimizing the detector’s validation loss. Our meta-teacher differs significantly from existing teacher-student models because the meta-teacher is explicitly trained for better teaching the detector (student), whereas existing teachers are trained for outstanding accuracy neglecting teaching ability. Extensive experiments on five FAS benchmarks show that with the proposed MT-FAS, the trained meta-teacher 1) provides better-suited supervision than both handcrafted labels and existing teacher-student models; and 2) significantly improves the performances of PA detectors.
PDF Accepted by IEEE TPAMI-2021

论文截图

Domain Generalization via Shuffled Style Assembly for Face Anti-Spoofing

Authors:Zhuo Wang, Zezheng Wang, Zitong Yu, Weihong Deng, Jiahong Li, Tingting Gao, Zhongyuan Wang

With diverse presentation attacks emerging continually, generalizable face anti-spoofing (FAS) has drawn growing attention. Most existing methods implement domain generalization (DG) on the complete representations. However, different image statistics may have unique properties for the FAS tasks. In this work, we separate the complete representation into content and style ones. A novel Shuffled Style Assembly Network (SSAN) is proposed to extract and reassemble different content and style features for a stylized feature space. Then, to obtain a generalized representation, a contrastive learning strategy is developed to emphasize liveness-related style information while suppress the domain-specific one. Finally, the representations of the correct assemblies are used to distinguish between living and spoofing during the inferring. On the other hand, despite the decent performance, there still exists a gap between academia and industry, due to the difference in data quantity and distribution. Thus, a new large-scale benchmark for FAS is built up to further evaluate the performance of algorithms in reality. Both qualitative and quantitative results on existing and proposed benchmarks demonstrate the effectiveness of our methods. The codes will be available at https://github.com/wangzhuo2019/SSAN.
PDF Accepted by CVPR2022

论文截图

Adaptive Transformers for Robust Few-shot Cross-domain Face Anti-spoofing

Authors:Hsin-Ping Huang, Deqing Sun, Yaojie Liu, Wen-Sheng Chu, Taihong Xiao, Jinwei Yuan, Hartwig Adam, Ming-Hsuan Yang

While recent face anti-spoofing methods perform well under the intra-domain setups, an effective approach needs to account for much larger appearance variations of images acquired in complex scenes with different sensors for robust performance. In this paper, we present adaptive vision transformers (ViT) for robust cross-domain face anti-spoofing. Specifically, we adopt ViT as a backbone to exploit its strength to account for long-range dependencies among pixels. We further introduce the ensemble adapters module and feature-wise transformation layers in the ViT to adapt to different domains for robust performance with a few samples. Experiments on several benchmark datasets show that the proposed models achieve both robust and competitive performance against the state-of-the-art methods.
PDF

论文截图

Learning Meta Pattern for Face Anti-Spoofing

Authors:Rizhao Cai, Zhi Li, Renjie Wan, Haoliang Li, Yongjian Hu, Alex Chichung Kot

Face Anti-Spoofing (FAS) is essential to secure face recognition systems and has been extensively studied in recent years. Although deep neural networks (DNNs) for the FAS task have achieved promising results in intra-dataset experiments with similar distributions of training and testing data, the DNNs’ generalization ability is limited under the cross-domain scenarios with different distributions of training and testing data. To improve the generalization ability, recent hybrid methods have been explored to extract task-aware handcrafted features (e.g., Local Binary Pattern) as discriminative information for the input of DNNs. However, the handcrafted feature extraction relies on experts’ domain knowledge, and how to choose appropriate handcrafted features is underexplored. To this end, we propose a learnable network to extract Meta Pattern (MP) in our learning-to-learn framework. By replacing handcrafted features with the MP, the discriminative information from MP is capable of learning a more generalized model. Moreover, we devise a two-stream network to hierarchically fuse the input RGB image and the extracted MP by using our proposed Hierarchical Fusion Module (HFM). We conduct comprehensive experiments and show that our MP outperforms the compared handcrafted features. Also, our proposed method with HFM and the MP can achieve state-of-the-art performance on two different domain generalization evaluation benchmarks.
PDF Accepted by IEEE Transactions on Information Forensics and Security (https://ieeexplore.ieee.org.remotexs.ntu.edu.sg/document/9732458) Source code available in https://github.com/RizhaoCai/MetaPattern_FAS

论文截图

Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

Authors:Shice Liu, Shitao Lu, Hongyi Xu, Jing Yang, Shouhong Ding, Lizhuang Ma

Although existing face anti-spoofing (FAS) methods achieve high accuracy in intra-domain experiments, their effects drop severely in cross-domain scenarios because of poor generalization. Recently, multifarious techniques have been explored, such as domain generalization and representation disentanglement. However, the improvement is still limited by two issues: 1) It is difficult to perfectly map all faces to a shared feature space. If faces from unknown domains are not mapped to the known region in the shared feature space, accidentally inaccurate predictions will be obtained. 2) It is hard to completely consider various spoof traces for disentanglement. In this paper, we propose a Feature Generation and Hypothesis Verification framework to alleviate the two issues. Above all, feature generation networks which generate hypotheses of real faces and known attacks are introduced for the first time in the FAS task. Subsequently, two hypothesis verification modules are applied to judge whether the input face comes from the real-face space and the real-face distribution respectively. Furthermore, some analyses of the relationship between our framework and Bayesian uncertainty estimation are given, which provides theoretical support for reliable defense in unknown domains. Experimental results show our framework achieves promising results and outperforms the state-of-the-art approaches on extensive public datasets.
PDF Accepted by AAAI 2022

论文截图

Deep Learning for Face Anti-Spoofing: A Survey

Authors:Zitong Yu, Yunxiao Qin, Xiaobai Li, Chenxu Zhao, Zhen Lei, Guoying Zhao

Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, traditional FAS methods based on handcrafted features become unreliable due to their limited representation capacity. With the emergence of large-scale academic datasets in the recent decade, deep learning based FAS achieves remarkable performance and dominates this area. However, existing reviews in this field mainly focus on the handcrafted features, which are outdated and uninspiring for the progress of FAS community. In this paper, to stimulate future research, we present the first comprehensive review of recent advances in deep learning based FAS. It covers several novel and insightful components: 1) besides supervision with binary label (e.g., ‘0’ for bonafide vs. ‘1’ for PAs), we also investigate recent methods with pixel-wise supervision (e.g., pseudo depth map); 2) in addition to traditional intra-dataset evaluation, we collect and analyze the latest methods specially designed for domain generalization and open-set FAS; and 3) besides commercial RGB camera, we summarize the deep learning applications under multi-modal (e.g., depth and infrared) or specialized (e.g., light field and flash) sensors. We conclude this survey by emphasizing current open issues and highlighting potential prospects.
PDF submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

论文截图

Robust Face Anti-Spoofing with Dual Probabilistic Modeling

Authors:Yuanhan Zhang, Yichao Wu, Zhenfei Yin, Jing Shao, Ziwei Liu

The field of face anti-spoofing (FAS) has witnessed great progress with the surge of deep learning. Due to its data-driven nature, existing FAS methods are sensitive to the noise in the dataset, which will hurdle the learning process. However, very few works consider noise modeling in FAS. In this work, we attempt to fill this gap by automatically addressing the noise problem from both label and data perspectives in a probabilistic manner. Specifically, we propose a unified framework called Dual Probabilistic Modeling (DPM), with two dedicated modules, DPM-LQ (Label Quality aware learning) and DPM-DQ (Data Quality aware learning). Both modules are designed based on the assumption that data and label should form coherent probabilistic distributions. DPM-LQ is able to produce robust feature representations without overfitting to the distribution of noisy semantic labels. DPM-DQ can eliminate data noise from False Reject' andFalse Accept’ during inference by correcting the prediction confidence of noisy data based on its quality distribution. Both modules can be incorporated into existing deep networks seamlessly and efficiently. Furthermore, we propose the generalized DPM to address the noise problem in practical usage without the need of semantic annotations. Extensive experiments demonstrate that this probabilistic modeling can 1) significantly improve the accuracy, and 2) make the model robust to the noise in real-world datasets. Without bells and whistles, our proposed DPM achieves state-of-the-art performance on multiple standard FAS benchmarks.
PDF

论文截图

Consistency Regularization for Deep Face Anti-Spoofing

Authors:Zezheng Wang, Zitong Yu, Xun Wang, Yunxiao Qin, Jiahong Li, Chenxu Zhao, Zhen Lei, Xin Liu, Size Li, Zhongyuan Wang

Face anti-spoofing (FAS) plays a crucial role in securing face recognition systems. Empirically, given an image, a model with more consistent output on different views of this image usually performs better, as shown in Fig.1. Motivated by this exciting observation, we conjecture that encouraging feature consistency of different views may be a promising way to boost FAS models. In this paper, we explore this way thoroughly by enhancing both Embedding-level and Prediction-level Consistency Regularization (EPCR) in FAS. Specifically, at the embedding-level, we design a dense similarity loss to maximize the similarities between all positions of two intermediate feature maps in a self-supervised fashion; while at the prediction-level, we optimize the mean square error between the predictions of two views. Notably, our EPCR is free of annotations and can directly integrate into semi-supervised learning schemes. Considering different application scenarios, we further design five diverse semi-supervised protocols to measure semi-supervised FAS techniques. We conduct extensive experiments to show that EPCR can significantly improve the performance of several supervised and semi-supervised tasks on benchmark datasets. The codes and protocols will be released at https://github.com/clks-wzz/EPCR.
PDF 10 tables, 4 figures

论文截图

A Novel Face-Anti Spoofing Neural Network Model For Face Recognition And Detection

Authors:Soham S. Sarpotdar

Face Recognition (FR) systems are being used in a variety of applications, including road crossings, banking, and mobile banking. The widespread use of FR systems has raised concerns about the safety of face biometrics against spoofing attacks, which use the use of a photo or video of a legitimate user’s face to gain illegal access to the resources or activities. Despite the development of several FAS or liveness detection methods (which determine whether a face is live or spoofed at the time of acquisition), the problem remains unsolved due to the difficulty of identifying discrimination and operationally reasonably priced spoof characteristics but also approaches. Additionally, certain facial portions are frequently repeated or correlate to image clutter, resulting in poor performance overall. This research proposes a face-anti-spoofing neural network model that outperforms existing models and has an efficiency of 0.89 percent.
PDF 9 Pages

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录