检测/分割/跟踪


2022-06-14 更新

Towards Model Generalization for Monocular 3D Object Detection

Authors:Zhenyu Li, Zehui Chen, Ang Li, Liangji Fang, Qinhong Jiang, Xianming Liu, Junjun Jiang

Monocular 3D object detection (Mono3D) has achieved tremendous improvements with emerging large-scale autonomous driving datasets and the rapid development of deep learning techniques. However, caused by severe domain gaps (e.g., the field of view (FOV), pixel size, and object size among datasets), Mono3D detectors have difficulty in generalization, leading to drastic performance degradation on unseen domains. To solve these issues, we combine the position-invariant transform and multi-scale training with the pixel-size depth strategy to construct an effective unified camera-generalized paradigm (CGP). It fully considers discrepancies in the FOV and pixel size of images captured by different cameras. Moreover, we further investigate the obstacle in quantitative metrics when cross-dataset inference through an exhaustive systematic study. We discern that the size bias of prediction leads to a colossal failure. Hence, we propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment. Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme even without utilizing data on the target domain.
PDF Fixed some mistakes

论文截图

Salient Object Detection via Integrity Learning

Authors:Mingchen Zhuge, Deng-Ping Fan, Nian Liu, Dingwen Zhang, Dong Xu, Ling Shao

Although current salient object detection (SOD) works have achieved significant progress, they are limited when it comes to the integrity of the predicted salient regions. We define the concept of integrity at both a micro and macro level. Specifically, at the micro level, the model should highlight all parts that belong to a certain salient object. Meanwhile, at the macro level, the model needs to discover all salient objects in a given image. To facilitate integrity learning for SOD, we design a novel Integrity Cognition Network (ICON), which explores three important components for learning strong integrity features. 1) Unlike existing models, which focus more on feature discriminability, we introduce a diverse feature aggregation (DFA) component to aggregate features with various receptive fields (i.e., kernel shape and context) and increase feature diversity. Such diversity is the foundation for mining the integral salient objects. 2) Based on the DFA features, we introduce an integrity channel enhancement (ICE) component with the goal of enhancing feature channels that highlight the integral salient objects, while suppressing the other distracting ones. 3) After extracting the enhanced features, the part-whole verification (PWV) method is employed to determine whether the part and whole object features have strong agreement. Such part-whole agreements can further improve the micro-level integrity for each salient object. To demonstrate the effectiveness of our ICON, comprehensive experiments are conducted on seven challenging benchmarks. Our ICON outperforms the baseline methods in terms of a wide range of metrics. Notably, our ICON achieves about 10% relative improvement over the previous best model in terms of average false negative ratio (FNR), on six datasets. Codes and results are available at: https://github.com/mczhuge/ICON.
PDF TPAMI accepted

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录