检测/分割/跟踪


2022-06-13 更新

FogAdapt: Self-Supervised Domain Adaptation for Semantic Segmentation of Foggy Images

Authors:Javed Iqbal, Rehan Hafiz, Mohsen Ali

This paper presents FogAdapt, a novel approach for domain adaptation of semantic segmentation for dense foggy scenes. Although significant research has been directed to reduce the domain shift in semantic segmentation, adaptation to scenes with adverse weather conditions remains an open question. Large variations in the visibility of the scene due to weather conditions, such as fog, smog, and haze, exacerbate the domain shift, thus making unsupervised adaptation in such scenarios challenging. We propose a self-entropy and multi-scale information augmented self-supervised domain adaptation method (FogAdapt) to minimize the domain shift in foggy scenes segmentation. Supported by the empirical evidence that an increase in fog density results in high self-entropy for segmentation probabilities, we introduce a self-entropy based loss function to guide the adaptation method. Furthermore, inferences obtained at different image scales are combined and weighted by the uncertainty to generate scale-invariant pseudo-labels for the target domain. These scale-invariant pseudo-labels are robust to visibility and scale variations. We evaluate the proposed model on real clear-weather scenes to real foggy scenes adaptation and synthetic non-foggy images to real foggy scenes adaptation scenarios. Our experiments demonstrate that FogAdapt significantly outperforms the current state-of-the-art in semantic segmentation of foggy images. Specifically, by considering the standard settings compared to state-of-the-art (SOTA) methods, FogAdapt gains 3.8% on Foggy Zurich, 6.0% on Foggy Driving-dense, and 3.6% on Foggy Driving in mIoU when adapted from Cityscapes to Foggy Zurich.
PDF Accepted at Elsevier Journal of Neurocomputing

论文截图

CF-YOLO: Cross Fusion YOLO for Object Detection in Adverse Weather with a High-quality Real Snow Dataset

Authors:Qiqi Ding, Peng Li, Xuefeng Yan, Ding Shi, Luming Liang, Weiming Wang, Haoran Xie, Jonathan Li, Mingqiang Wei

Snow is one of the toughest adverse weather conditions for object detection (OD). Currently, not only there is a lack of snowy OD datasets to train cutting-edge detectors, but also these detectors have difficulties learning latent information beneficial for detection in snow. To alleviate the two above problems, we first establish a real-world snowy OD dataset, named RSOD. Besides, we develop an unsupervised training strategy with a distinctive activation function, called $Peak \ Act$, to quantitatively evaluate the effect of snow on each object. Peak Act helps grading the images in RSOD into four-difficulty levels. To our knowledge, RSOD is the first quantitatively evaluated and graded snowy OD dataset. Then, we propose a novel Cross Fusion (CF) block to construct a lightweight OD network based on YOLOv5s (call CF-YOLO). CF is a plug-and-play feature aggregation module, which integrates the advantages of Feature Pyramid Network and Path Aggregation Network in a simpler yet more flexible form. Both RSOD and CF lead our CF-YOLO to possess an optimization ability for OD in real-world snow. That is, CF-YOLO can handle unfavorable detection problems of vagueness, distortion and covering of snow. Experiments show that our CF-YOLO achieves better detection results on RSOD, compared to SOTAs. The code and dataset are available at https://github.com/qqding77/CF-YOLO-and-RSOD.
PDF 10pages

论文截图

Depth Estimation Matters Most: Improving Per-Object Depth Estimation for Monocular 3D Detection and Tracking

Authors:Longlong Jing, Ruichi Yu, Henrik Kretzschmar, Kang Li, Charles R. Qi, Hang Zhao, Alper Ayvaci, Xu Chen, Dillon Cower, Yingwei Li, Yurong You, Han Deng, Congcong Li, Dragomir Anguelov

Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving. Approaches to monocular 3D perception including detection and tracking, however, often yield inferior performance when compared to LiDAR-based techniques. Through systematic analysis, we identified that per-object depth estimation accuracy is a major factor bounding the performance. Motivated by this observation, we propose a multi-level fusion method that combines different representations (RGB and pseudo-LiDAR) and temporal information across multiple frames for objects (tracklets) to enhance per-object depth estimation. Our proposed fusion method achieves the state-of-the-art performance of per-object depth estimation on the Waymo Open Dataset, the KITTI detection dataset, and the KITTI MOT dataset. We further demonstrate that by simply replacing estimated depth with fusion-enhanced depth, we can achieve significant improvements in monocular 3D perception tasks, including detection and tracking.
PDF

论文截图

Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation

Authors:Feng Li, Hao Zhang, Huaizhe xu, Shilong Liu, Lei Zhang, Lionel M. Ni, Heung-Yeung Shum

In this paper we present Mask DINO, a unified object detection and segmentation framework. Mask DINO extends DINO (DETR with Improved Denoising Anchor Boxes) by adding a mask prediction branch which supports all image segmentation tasks (instance, panoptic, and semantic). It makes use of the query embeddings from DINO to dot-product a high-resolution pixel embedding map to predict a set of binary masks. Some key components in DINO are extended for segmentation through a shared architecture and training process. Mask DINO is simple, efficient, scalable, and benefits from joint large-scale detection and segmentation datasets. Our experiments show that Mask DINO significantly outperforms all existing specialized segmentation methods, both on a ResNet-50 backbone and a pre-trained model with SwinL backbone. Notably, Mask DINO establishes the best results to date on instance segmentation (54.5 AP on COCO), panoptic segmentation (59.4 PQ on COCO), and semantic segmentation (60.8 mIoU on ADE20K). Code will be avaliable at \url{https://github.com/IDEACVR/MaskDINO}.
PDF

论文截图

Multimodal Object Detection via Probabilistic Ensembling

Authors:Yi-Ting Chen, Jinghao Shi, Zelin Ye, Christoph Mertz, Shu Kong, Deva Ramanan

Object detection with multimodal inputs can improve many safety-critical systems such as autonomous vehicles (AVs). Motivated by AVs that operate in both day and night, we study multimodal object detection with RGB and thermal cameras, since the latter provides much stronger object signatures under poor illumination. We explore strategies for fusing information from different modalities. Our key contribution is a probabilistic ensembling technique, ProbEn, a simple non-learned method that fuses together detections from multi-modalities. We derive ProbEn from Bayes’ rule and first principles that assume conditional independence across modalities. Through probabilistic marginalization, ProbEn elegantly handles missing modalities when detectors do not fire on the same object. Importantly, ProbEn also notably improves multimodal detection even when the conditional independence assumption does not hold, e.g., fusing outputs from other fusion methods (both off-the-shelf and trained in-house). We validate ProbEn on two benchmarks containing both aligned (KAIST) and unaligned (FLIR) multimodal images, showing that ProbEn outperforms prior work by more than 13% in relative performance!
PDF https://github.com/Jamie725/RGBT-detection

论文截图

H-EMD: A Hierarchical Earth Mover’s Distance Method for Instance Segmentation

Authors:Peixian Liang, Yizhe Zhang, Yifan Ding, Jianxu Chen, Chinedu S. Madukoma, Tim Weninger, Joshua D. Shrout, Danny Z. Chen

Deep learning (DL) based semantic segmentation methods have achieved excellent performance in biomedical image segmentation, producing high quality probability maps to allow extraction of rich instance information to facilitate good instance segmentation. While numerous efforts were put into developing new DL semantic segmentation models, less attention was paid to a key issue of how to effectively explore their probability maps to attain the best possible instance segmentation. We observe that probability maps by DL semantic segmentation models can be used to generate many possible instance candidates, and accurate instance segmentation can be achieved by selecting from them a set of “optimized” candidates as output instances. Further, the generated instance candidates form a well-behaved hierarchical structure (a forest), which allows selecting instances in an optimized manner. Hence, we propose a novel framework, called hierarchical earth mover’s distance (H-EMD), for instance segmentation in biomedical 2D+time videos and 3D images, which judiciously incorporates consistent instance selection with semantic-segmentation-generated probability maps. H-EMD contains two main stages. (1) Instance candidate generation: capturing instance-structured information in probability maps by generating many instance candidates in a forest structure. (2) Instance candidate selection: selecting instances from the candidate set for final instance segmentation. We formulate a key instance selection problem on the instance candidate forest as an optimization problem based on the earth mover’s distance (EMD), and solve it by integer linear programming. Extensive experiments on eight biomedical video or 3D datasets demonstrate that H-EMD consistently boosts DL semantic segmentation models and is highly competitive with state-of-the-art methods.
PDF Accepted at IEEE Transactions On Medical Imaging (TMI)

论文截图

Spatial Parsing and Dynamic Temporal Pooling networks for Human-Object Interaction detection

Authors:Hongsheng Li, Guangming Zhu, Wu Zhen, Lan Ni, Peiyi Shen, Liang Zhang, Ning Wang, Cong Hua

The key of Human-Object Interaction(HOI) recognition is to infer the relationship between human and objects. Recently, the image’s Human-Object Interaction(HOI) detection has made significant progress. However, there is still room for improvement in video HOI detection performance. Existing one-stage methods use well-designed end-to-end networks to detect a video segment and directly predict an interaction. It makes the model learning and further optimization of the network more complex. This paper introduces the Spatial Parsing and Dynamic Temporal Pooling (SPDTP) network, which takes the entire video as a spatio-temporal graph with human and object nodes as input. Unlike existing methods, our proposed network predicts the difference between interactive and non-interactive pairs through explicit spatial parsing, and then performs interaction recognition. Moreover, we propose a learnable and differentiable Dynamic Temporal Module(DTM) to emphasize the keyframes of the video and suppress the redundant frame. Furthermore, the experimental results show that SPDTP can pay more attention to active human-object pairs and valid keyframes. Overall, we achieve state-of-the-art performance on CAD-120 dataset and Something-Else dataset.
PDF Accepted by IJCNN2022

论文截图

MLAN: Multi-Level Adversarial Network for Domain Adaptive Semantic Segmentation

Authors:Jiaxing Huang, Dayan Guan, Shijian Lu, Aoran Xiao

Recent progresses in domain adaptive semantic segmentation demonstrate the effectiveness of adversarial learning (AL) in unsupervised domain adaptation. However, most adversarial learning based methods align source and target distributions at a global image level but neglect the inconsistency around local image regions. This paper presents a novel multi-level adversarial network (MLAN) that aims to address inter-domain inconsistency at both global image level and local region level optimally. MLAN has two novel designs, namely, region-level adversarial learning (RL-AL) and co-regularized adversarial learning (CR-AL). Specifically, RL-AL models prototypical regional context-relations explicitly in the feature space of a labelled source domain and transfers them to an unlabelled target domain via adversarial learning. CR-AL fuses region-level AL and image-level AL optimally via mutual regularization. In addition, we design a multi-level consistency map that can guide domain adaptation in both input space ($i.e.$, image-to-image translation) and output space ($i.e.$, self-training) effectively. Extensive experiments show that MLAN outperforms the state-of-the-art with a large margin consistently across multiple datasets.
PDF Accepted to Pattern Recognition, 2022

论文截图

Towards Model Generalization for Monocular 3D Object Detection

Authors:Zhenyu Li, Zehui Chen, Ang Li, Liangji Fang, Qinhong Jiang, Xianming Liu, Junjun Jiang

Monocular 3D object detection (Mono3D) has achieved tremendous improvements with emerging large-scale autonomous driving datasets and the rapid development of deep learning techniques. However, caused by severe domain gaps (e.g., the field of view (FOV), pixel size, and object size among datasets), Mono3D detectors have difficulty in generalization, leading to drastic performance degradation on unseen domains. To solve these issues, we combine the position-invariant transform and multi-scale training with the pixel-size depth strategy to construct an effective unified camera-generalized paradigm (CGP). It fully considers discrepancies in the FOV and pixel size of images captured by different cameras. Moreover, we further investigate the obstacle in quantitative metrics when cross-dataset inference through an exhaustive systematic study. We discern that the size bias of prediction leads to a colossal failure. Hence, we propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment. Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme even without utilizing data on the target domain.
PDF Some mistakes are raised up and we need to re-write the paper and re-order the paper structure

论文截图

Point RCNN: An Angle-Free Framework for Rotated Object Detection

Authors:Qiang Zhou, Chaohui Yu, Zhibin Wang, Hao Li

Rotated object detection in aerial images is still challenging due to arbitrary orientations, large scale and aspect ratio variations, and extreme density of objects. Existing state-of-the-art rotated object detection methods mainly rely on angle-based detectors. However, angle regression can easily suffer from the long-standing boundary problem. To tackle this problem, we propose a purely angle-free framework for rotated object detection, called Point RCNN, which mainly consists of PointRPN and PointReg. In particular, PointRPN generates accurate rotated RoIs (RRoIs) by converting the learned representative points with a coarse-to-fine manner, which is motivated by RepPoints. Based on the learned RRoIs, PointReg performs corner points refinement for more accurate detection. In addition, aerial images are often severely unbalanced in categories, and existing methods almost ignore this issue. In this paper, we also experimentally verify that re-sampling the images of the rare categories will stabilize training and further improve the detection performance. Experiments demonstrate that our Point RCNN achieves the new state-of-the-art detection performance on commonly used aerial datasets, including DOTA-v1.0, DOTA-v1.5, and HRSC2016.
PDF

论文截图

Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images

Authors:Libo Wang, Rui Li, Dongzhi Wang, Chenxi Duan, Teng Wang, Xiaoliang Meng

Semantic segmentation from very fine resolution (VFR) urban scene images plays a significant role in several application scenarios including autonomous driving, land cover classification, and urban planning, etc. However, the tremendous details contained in the VFR image, especially the considerable variations in scale and appearance of objects, severely limit the potential of the existing deep learning approaches. Addressing such issues represents a promising research field in the remote sensing community, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose a Bilateral Awareness Network which contains a dependency path and a texture path to fully capture the long-range relationships and fine-grained details in VFR images. Specifically, the dependency path is conducted based on the ResT, a novel Transformer backbone with memory-efficient multi-head self-attention, while the texture path is built on the stacked convolution operation. Besides, using the linear attention mechanism, a feature aggregation module is designed to effectively fuse the dependency features and texture features. Extensive experiments conducted on the three large-scale urban scene image segmentation datasets, i.e., ISPRS Vaihingen dataset, ISPRS Potsdam dataset, and UAVid dataset, demonstrate the effectiveness of our BANet. Specifically, a 64.6% mIoU is achieved on the UAVid dataset. Code is available at https://github.com/WangLibo1995/GeoSeg.
PDF Accepted by Remote Sensing, see https://www.mdpi.com/2072-4292/13/16/3065

论文截图

Saccade Mechanisms for Image Classification, Object Detection and Tracking

Authors:Saurabh Farkya, Zachary Daniels, Aswin Nadamuni Raghavan, David Zhang, Michael Piacentino

We examine how the saccade mechanism from biological vision can be used to make deep neural networks more efficient for classification and object detection problems. Our proposed approach is based on the ideas of attention-driven visual processing and saccades, miniature eye movements influenced by attention. We conduct experiments by analyzing: i) the robustness of different deep neural network (DNN) feature extractors to partially-sensed images for image classification and object detection, and ii) the utility of saccades in masking image patches for image classification and object tracking. Experiments with convolutional nets (ResNet-18) and transformer-based models (ViT, DETR, TransTrack) are conducted on several datasets (CIFAR-10, DAVSOD, MSCOCO, and MOT17). Our experiments show intelligent data reduction via learning to mimic human saccades when used in conjunction with state-of-the-art DNNs for classification, detection, and tracking tasks. We observed minimal drop in performance for the classification and detection tasks while only using about 30\% of the original sensor data. We discuss how the saccade mechanism can inform hardware design via ``in-pixel’’ processing.
PDF 4 Pages, 6 figures, will be presented at CVPR2022-NeuroVision workshop as a Lightning talk

论文截图

VITA: Video Instance Segmentation via Object Token Association

Authors:Miran Heo, Sukjun Hwang, Seoung Wug Oh, Joon-Young Lee, Seon Joo Kim

We introduce a novel paradigm for offline Video Instance Segmentation (VIS), based on the hypothesis that explicit object-oriented information can be a strong clue for understanding the context of the entire sequence. To this end, we propose VITA, a simple structure built on top of an off-the-shelf Transformer-based image instance segmentation model. Specifically, we use an image object detector as a means of distilling object-specific contexts into object tokens. VITA accomplishes video-level understanding by associating frame-level object tokens without using spatio-temporal backbone features. By effectively building relationships between objects using the condensed information, VITA achieves the state-of-the-art on VIS benchmarks with a ResNet-50 backbone: 49.8 AP, 45.7 AP on YouTube-VIS 2019 & 2021 and 19.6 AP on OVIS. Moreover, thanks to its object token-based structure that is disjoint from the backbone features, VITA shows several practical advantages that previous offline VIS methods have not explored - handling long and high-resolution videos with a common GPU and freezing a frame-level detector trained on image domain. Code will be made available at https://github.com/sukjunhwang/VITA.
PDF

论文截图

GridShift: A Faster Mode-seeking Algorithm for Image Segmentation and Object Tracking

Authors:Abhishek Kumar, Oladayo S. Ajani, Swagatam Das, Rammohan Mallipeddi

In machine learning and computer vision, mean shift (MS) qualifies as one of the most popular mode-seeking algorithms used for clustering and image segmentation. It iteratively moves each data point to the weighted mean of its neighborhood data points. The computational cost required to find the neighbors of each data point is quadratic to the number of data points. Consequently, the vanilla MS appears to be very slow for large-scale datasets. To address this issue, we propose a mode-seeking algorithm called GridShift, with significant speedup and principally based on MS. To accelerate, GridShift employs a grid-based approach for neighbor search, which is linear in the number of data points. In addition, GridShift moves the active grid cells (grid cells associated with at least one data point) in place of data points towards the higher density, a step that provides more speedup. The runtime of GridShift is linear in the number of active grid cells and exponential in the number of features. Therefore, it is ideal for large-scale low-dimensional applications such as object tracking and image segmentation. Through extensive experiments, we showcase the superior performance of GridShift compared to other MS-based as well as state-of-the-art algorithms in terms of accuracy and runtime on benchmark datasets for image segmentation. Finally, we provide a new object-tracking algorithm based on GridShift and show promising results for object tracking compared to CamShift and meanshift++.
PDF

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录