I2I Translation


2022-06-01 更新

Text2Human: Text-Driven Controllable Human Image Generation

Authors:Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu, Chen Change Loy, Ziwei Liu

Generating high-quality and diverse human images is an important yet challenging task in vision and graphics. However, existing generative models often fall short under the high diversity of clothing shapes and textures. Furthermore, the generation process is even desired to be intuitively controllable for layman users. In this work, we present a text-driven controllable framework, Text2Human, for a high-quality and diverse human generation. We synthesize full-body human images starting from a given human pose with two dedicated steps. 1) With some texts describing the shapes of clothes, the given human pose is first translated to a human parsing map. 2) The final human image is then generated by providing the system with more attributes about the textures of clothes. Specifically, to model the diversity of clothing textures, we build a hierarchical texture-aware codebook that stores multi-scale neural representations for each type of texture. The codebook at the coarse level includes the structural representations of textures, while the codebook at the fine level focuses on the details of textures. To make use of the learned hierarchical codebook to synthesize desired images, a diffusion-based transformer sampler with mixture of experts is firstly employed to sample indices from the coarsest level of the codebook, which then is used to predict the indices of the codebook at finer levels. The predicted indices at different levels are translated to human images by the decoder learned accompanied with hierarchical codebooks. The use of mixture-of-experts allows for the generated image conditioned on the fine-grained text input. The prediction for finer level indices refines the quality of clothing textures. Extensive quantitative and qualitative evaluations demonstrate that our proposed framework can generate more diverse and realistic human images compared to state-of-the-art methods.
PDF SIGGRAPH 2022; Project Page: https://yumingj.github.io/projects/Text2Human.html, Codes available at https://github.com/yumingj/Text2Human

论文截图

Variational Transfer Learning using Cross-Domain Latent Modulation

Authors:Jinyong Hou, Jeremiah D. Deng, Stephen Cranefield, Xuejie Din

To successfully apply trained neural network models to new domains, powerful transfer learning solutions are essential. We propose to introduce a novel cross-domain latent modulation mechanism to a variational autoencoder framework so as to achieve effective transfer learning. Our key idea is to procure deep representations from one data domain and use it to influence the reparameterization of the latent variable of another domain. Specifically, deep representations of the source and target domains are first extracted by a unified inference model and aligned by employing gradient reversal. The learned deep representations are then cross-modulated to the latent encoding of the alternative domain, where consistency constraints are also applied. In the empirical validation that includes a number of transfer learning benchmark tasks for unsupervised domain adaptation and image-to-image translation, our model demonstrates competitive performance, which is also supported by evidence obtained from visualization.
PDF Under review. arXiv admin note: substantial text overlap with arXiv:2012.11727

论文截图

PDE-based Group Equivariant Convolutional Neural Networks

Authors:Bart Smets, Jim Portegies, Erik Bekkers, Remco Duits

We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs). In this framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the layer’s trainable weights. Formulating our PDEs on homogeneous spaces allows these networks to be designed with built-in symmetries such as rotation in addition to the standard translation equivariance of CNNs. Having all the desired symmetries included in the design obviates the need to include them by means of costly techniques such as data augmentation. We will discuss our PDE-based G-CNNs (PDE-G-CNNs) in a general homogeneous space setting while also going into the specifics of our primary case of interest: roto-translation equivariance. We solve the PDE of interest by a combination of linear group convolutions and non-linear morphological group convolutions with analytic kernel approximations that we underpin with formal theorems. Our kernel approximations allow for fast GPU-implementation of the PDE-solvers, we release our implementation with this article in the form of the LieTorch extension to PyTorch, available at https://gitlab.com/bsmetsjr/lietorch . Just like for linear convolution a morphological convolution is specified by a kernel that we train in our PDE-G-CNNs. In PDE-G-CNNs we do not use non-linearities such as max/min-pooling and ReLUs as they are already subsumed by morphological convolutions. We present a set of experiments to demonstrate the strength of the proposed PDE-G-CNNs in increasing the performance of deep learning based imaging applications with far fewer parameters than traditional CNNs.
PDF 27 pages, 18 figures. v2 changes: - mentioned KerCNNs - added section Generalization of G-CNNs - clarification that the experiments utilized automatic differentiation and SGD. v3 changes: - streamlined theoretical framework - formulation and proof Thm.1 & 2 - expanded experiments. v4 changes: typos in Prop.5 and (20) v5/6 changes: minor revision

论文截图

MultiEarth 2022 — Multimodal Learning for Earth and Environment Workshop and Challenge

Authors:Miriam Cha, Kuan Wei Huang, Morgan Schmidt, Gregory Angelides, Mark Hamilton, Sam Goldberg, Armando Cabrera, Phillip Isola, Taylor Perron, Bill Freeman, Yen-Chen Lin, Brandon Swenson, Jean Piou

The Multimodal Learning for Earth and Environment Challenge (MultiEarth 2022) will be the first competition aimed at the monitoring and analysis of deforestation in the Amazon rainforest at any time and in any weather conditions. The goal of the Challenge is to provide a common benchmark for multimodal information processing and to bring together the earth and environmental science communities as well as multimodal representation learning communities to compare the relative merits of the various multimodal learning methods to deforestation estimation under well-defined and strictly comparable conditions. MultiEarth 2022 will have three sub-challenges: 1) matrix completion, 2) deforestation estimation, and 3) image-to-image translation. This paper presents the challenge guidelines, datasets, and evaluation metrics for the three sub-challenges. Our challenge website is available at https://sites.google.com/view/rainforest-challenge.
PDF

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录