2022-05-31 更新
Compressible-composable NeRF via Rank-residual Decomposition
Authors:Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, Gang Zeng
Neural Radiance Field (NeRF) has emerged as a compelling method to represent 3D objects and scenes for photo-realistic rendering. However, its implicit representation causes difficulty in manipulating the models like the explicit mesh representation. Several recent advances in NeRF manipulation are usually restricted by a shared renderer network, or suffer from large model size. To circumvent the hurdle, in this paper, we present an explicit neural field representation that enables efficient and convenient manipulation of models. To achieve this goal, we learn a hybrid tensor rank decomposition of the scene without neural networks. Motivated by the low-rank approximation property of the SVD algorithm, we propose a rank-residual learning strategy to encourage the preservation of primary information in lower ranks. The model size can then be dynamically adjusted by rank truncation to control the levels of detail, achieving near-optimal compression without extra optimization. Furthermore, different models can be arbitrarily transformed and composed into one scene by concatenating along the rank dimension. The growth of storage cost can also be mitigated by compressing the unimportant objects in the composed scene. We demonstrate that our method is able to achieve comparable rendering quality to state-of-the-art methods, while enabling extra capability of compression and composition. Code will be made available at \url{https://github.com/ashawkey/CCNeRF}.
PDF
论文截图
Hallucinated Neural Radiance Fields in the Wild
Authors:Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng, Xuan Wang, Jue Wang
Neural Radiance Fields (NeRF) has recently gained popularity for its impressive novel view synthesis ability. This paper studies the problem of hallucinated NeRF: i.e., recovering a realistic NeRF at a different time of day from a group of tourism images. Existing solutions adopt NeRF with a controllable appearance embedding to render novel views under various conditions, but they cannot render view-consistent images with an unseen appearance. To solve this problem, we present an end-to-end framework for constructing a hallucinated NeRF, dubbed as Ha-NeRF. Specifically, we propose an appearance hallucination module to handle time-varying appearances and transfer them to novel views. Considering the complex occlusions of tourism images, we introduce an anti-occlusion module to decompose the static subjects for visibility accurately. Experimental results on synthetic data and real tourism photo collections demonstrate that our method can hallucinate the desired appearances and render occlusion-free images from different views. The project and supplementary materials are available at https://rover-xingyu.github.io/Ha-NeRF/.
PDF Accepted by CVPR 2022. Project website: https://rover-xingyu.github.io/Ha-NeRF/
论文截图
V4D: Voxel for 4D Novel View Synthesis
Authors:Wanshui Gan, Hongbin Xu, Yi Huang, Shifeng Chen, Naoto Yokoya
Neural radiance fields have made a remarkable breakthrough in the novel view synthesis task at the 3D static scene. However, for the 4D circumstance (e.g., dynamic scene), the performance of the existing method is still limited by the capacity of the neural network, typically in a multilayer perceptron network (MLP). In this paper, we present the method to model the 4D neural radiance field by the 3D voxel, short as V4D, where the 3D voxel has two formats. The first one is to regularly model the bounded 3D space and then use the sampled local 3D feature with the time index to model the density field and the texture field. The second one is in look-up tables (LUTs) format that is for the pixel-level refinement, where the pseudo-surface produced by the volume rendering is utilized as the guidance information to learn a 2D pixel-level refinement mapping. The proposed LUTs-based refinement module achieves the performance gain with a little computational cost and could serve as the plug-and-play module in the novel view synthesis task. Moreover, we propose a more effective conditional positional encoding toward the 4D data that achieves performance gain with negligible computational burdens. Extensive experiments demonstrate that the proposed method achieves state-of-the-art performance by a large margin. At last, the proposed V4D is also a computational-friendly method in both the training and testing phase, where we achieve 2 times faster in the training phase and 10 times faster in the inference phase compared with the state-of-the-art method.
PDF