2022-05-31 更新
Fake It Till You Make It: Near-Distribution Novelty Detection by Score-Based Generative Models
Authors:Hossein Mirzaei, Mohammadreza Salehi, Sajjad Shahabi, Efstratios Gavves, Cees G. M. Snoek, Mohammad Sabokrou, Mohammad Hossein Rohban
We aim for image-based novelty detection. Despite considerable progress, existing models either fail or face a dramatic drop under the so-called ``near-distribution” setting, where the differences between normal and anomalous samples are subtle. We first demonstrate existing methods experience up to 20\% decrease in performance in the near-distribution setting. Next, we propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data. Our model is then fine-tuned to distinguish such data from the normal samples. We provide a quantitative as well as qualitative evaluation of this strategy, and compare the results with a variety of GAN-based models. Effectiveness of our method for both the near-distribution and standard novelty detection is assessed through extensive experiments on datasets in diverse applications such as medical images, object classification, and quality control. This reveals that our method considerably improves over existing models, and consistently decreases the gap between the near-distribution and standard novelty detection performance. Overall, our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks. The code repository is available at https://github.com/rohban-lab/FITYMI
PDF
论文截图
Looks Like Magic: Transfer Learning in GANs to Generate New Card Illustrations
Authors:Matheus K. Venturelli, Pedro H. Gomes, Jônatas Wehrmann
In this paper, we propose MAGICSTYLEGAN and MAGICSTYLEGAN-ADA - both incarnations of the state-of-the-art models StyleGan2 and StyleGan2 ADA - to experiment with their capacity of transfer learning into a rather different domain: creating new illustrations for the vast universe of the game “Magic: The Gathering” cards. This is a challenging task especially due to the variety of elements present in these illustrations, such as humans, creatures, artifacts, and landscapes - not to mention the plethora of art styles of the images made by various artists throughout the years. To solve the task at hand, we introduced a novel dataset, named MTG, with thousands of illustration from diverse card types and rich in metadata. The resulting set is a dataset composed by a myriad of both realistic and fantasy-like illustrations. Although, to investigate effects of diversity we also introduced subsets that contain specific types of concepts, such as forests, islands, faces, and humans. We show that simpler models, such as DCGANs, are not able to learn to generate proper illustrations in any setting. On the other side, we train instances of MAGICSTYLEGAN using all proposed subsets, being able to generate high quality illustrations. We perform experiments to understand how well pre-trained features from StyleGan2 can be transferred towards the target domain. We show that in well trained models we can find particular instances of noise vector that realistically represent real images from the dataset. Moreover, we provide both quantitative and qualitative studies to support our claims, and that demonstrate that MAGICSTYLEGAN is the state-of-the-art approach for generating Magic illustrations. Finally, this paper highlights some emerging properties regarding transfer learning in GANs, which is still a somehow under-explored field in generative learning research.
PDF
论文截图
Conditional Image Generation by Conditioning Variational Auto-Encoders
Authors:William Harvey, Saeid Naderiparizi, Frank Wood
We present a conditional variational auto-encoder (VAE) which, to avoid the substantial cost of training from scratch, uses an architecture and training objective capable of leveraging a foundation model in the form of a pretrained unconditional VAE. To train the conditional VAE, we only need to train an artifact to perform amortized inference over the unconditional VAE’s latent variables given a conditioning input. We demonstrate our approach on tasks including image inpainting, for which it outperforms state-of-the-art GAN-based approaches at faithfully representing the inherent uncertainty. We conclude by describing a possible application of our inpainting model, in which it is used to perform Bayesian experimental design for the purpose of guiding a sensor.
PDF 37 pages, 20 figures