2022-05-29 更新
Learning to segment with limited annotations: Self-supervised pretraining with regression and contrastive loss in MRI
Authors:Lavanya Umapathy, Zhiyang Fu, Rohit Philip, Diego Martin, Maria Altbach, Ali Bilgin
Obtaining manual annotations for large datasets for supervised training of deep learning (DL) models is challenging. The availability of large unlabeled datasets compared to labeled ones motivate the use of self-supervised pretraining to initialize DL models for subsequent segmentation tasks. In this work, we consider two pre-training approaches for driving a DL model to learn different representations using: a) regression loss that exploits spatial dependencies within an image and b) contrastive loss that exploits semantic similarity between pairs of images. The effect of pretraining techniques is evaluated in two downstream segmentation applications using Magnetic Resonance (MR) images: a) liver segmentation in abdominal T2-weighted MR images and b) prostate segmentation in T2-weighted MR images of the prostate. We observed that DL models pretrained using self-supervision can be finetuned for comparable performance with fewer labeled datasets. Additionally, we also observed that initializing the DL model using contrastive loss based pretraining performed better than the regression loss.
PDF Presented at the Annual Conference of International Society for Magnetic Resonance in Medicine, London, UK. May 2022
论文截图
Conditional Supervised Contrastive Learning for Fair Text Classification
Authors:Jianfeng Chi, William Shand, Yaodong Yu, Kai-Wei Chang, Han Zhao, Yuan Tian
Contrastive representation learning has gained much attention due to its superior performance in learning representations from both image and sequential data. However, the learned representations could potentially lead to performance disparities in downstream tasks, such as increased silencing of underrepresented groups in toxicity comment classification. In light of this challenge, in this work, we study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning. Specifically, we first theoretically analyze the connections between learning representations with fairness constraint and conditional supervised contrastive objectives. Inspired by our theoretical findings, we propose to use conditional supervised contrastive objectives to learn fair representations for text classification. We conduct experiments on two text datasets to demonstrate the effectiveness of our approaches in balancing the trade-offs between task performance and bias mitigation among existing baselines for text classification. Furthermore, we also show that the proposed methods are stable in different hyperparameter settings.
PDF