检测/分割/跟踪


2022-05-29 更新

Corrosion Detection for Industrial Objects: From Multi-Sensor System to 5D Feature Space

Authors:Dennis Haitz, Boris Jutzi, Patrick Huebner, Markus Ulrich

Corrosion is a form of damage that often appears on the surface of metal-made objects used in industrial applications. Those damages can be critical depending on the purpose of the used object. Optical-based testing systems provide a form of non-contact data acquisition, where the acquired data can then be used to analyse the surface of an object. In the field of industrial image processing, this is called surface inspection. We provide a testing setup consisting of a rotary table which rotates the object by 360 degrees, as well as industrial RGB cameras and laser triangulation sensors for the acquisition of 2D and 3D data as our multi-sensor system. These sensors acquire data while the object to be tested takes a full rotation. Further on, data augmentation is applied to prepare new data or enhance already acquired data. In order to evaluate the impact of a laser triangulation sensor for corrosion detection, one challenge is to at first fuse the data of both domains. After the data fusion process, 5 different channels can be utilized to create a 5D feature space. Besides the red, green and blue channels of the image (1-3), additional range data from the laser triangulation sensor is incorporated (4). As a fifth channel, said sensor provides additional intensity data (5). With a multi-channel image classification, a 5D feature space will lead to slightly superior results opposed to a 3D feature space, composed of only the RGB channels of the image.
PDF 8 pages, 4 figures

论文截图

Light In The Black: An Evaluation of Data Augmentation Techniques for COVID-19 CT’s Semantic Segmentation

Authors:Bruno A. Krinski, Daniel V. Ruiz, Eduardo Todt

With the COVID-19 global pandemic, computer-assisted diagnoses of medical images have gained much attention, and robust methods of Semantic Segmentation of Computed Tomography (CT) became highly desirable. Semantic Segmentation of CT is one of many research fields of automatic detection of COVID-19 and has been widely explored since the COVID-19 outbreak. In this work, we propose an extensive analysis of how different data augmentation techniques improve the training of encoder-decoder neural networks on this problem. Twenty different data augmentation techniques were evaluated on five different datasets. Each dataset was validated through a five-fold cross-validation strategy, thus resulting in over 3,000 experiments. Our findings show that spatial level transformations are the most promising to improve the learning of neural networks on this problem.
PDF

论文截图

AASeg: Attention Aware Network for Real Time Semantic Segmentation

Authors:Abhinav Sagar

In this paper, we present a new network named Attention Aware Network (AASeg) for real time semantic image segmentation. Our network incorporates spatial and channel information using Spatial Attention (SA) and Channel Attention (CA) modules respectively. It also uses dense local multi-scale context information using Multi Scale Context (MSC) module. The feature maps are concatenated individually to produce the final segmentation map. We demonstrate the effectiveness of our method using a comprehensive analysis, quantitative experimental results and ablation study using Cityscapes, ADE20K and Camvid datasets. Our network performs better than most previous architectures with a 74.4\% Mean IOU on Cityscapes test dataset while running at 202.7 FPS.
PDF This work makes assumptions which were found wrong later by the author

论文截图

Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml

Authors:Nicolò Ghielmetti, Vladimir Loncar, Maurizio Pierini, Marcel Roed, Sioni Summers, Thea Aarrestad, Christoffer Petersson, Hampus Linander, Jennifer Ngadiuba, Kelvin Lin, Philip Harris

In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators for real-time semantic segmentation tasks relevant for autonomous driving. Considering compressed versions of the ENet convolutional neural network architecture, we demonstrate a fully-on-chip deployment with a latency of 4.9 ms per image, using less than 30% of the available resources on a Xilinx ZCU102 evaluation board. The latency is reduced to 3 ms per image when increasing the batch size to ten, corresponding to the use case where the autonomous vehicle receives inputs from multiple cameras simultaneously. We show, through aggressive filter reduction and heterogeneous quantization-aware training, and an optimized implementation of convolutional layers, that the power consumption and resource utilization can be significantly reduced while maintaining accuracy on the Cityscapes dataset.
PDF 11 pages, 6 tables, 5 figures

论文截图

Domain Adaptation for Object Detection using SE Adaptors and Center Loss

Authors:Sushruth Nagesh, Shreyas Rajesh, Asfiya Baig, Savitha Srinivasan

Despite growing interest in object detection, very few works address the extremely practical problem of cross-domain robustness especially for automative applications. In order to prevent drops in performance due to domain shift, we introduce an unsupervised domain adaptation method built on the foundation of faster-RCNN with two domain adaptation components addressing the shift at the instance and image levels respectively and apply a consistency regularization between them. We also introduce a family of adaptation layers that leverage the squeeze excitation mechanism called SE Adaptors to improve domain attention and thus improves performance without any prior requirement of knowledge of the new target domain. Finally, we incorporate a center loss in the instance and image level representations to improve the intra-class variance. We report all results with Cityscapes as our source domain and Foggy Cityscapes as the target domain outperforming previous baselines.
PDF

论文截图

Semantic Segmentation for Thermal Images: A Comparative Survey

Authors:Zülfiye Kütük, Görkem Algan

Semantic segmentation is a challenging task since it requires excessively more low-level spatial information of the image compared to other computer vision problems. The accuracy of pixel-level classification can be affected by many factors, such as imaging limitations and the ambiguity of object boundaries in an image. Conventional methods exploit three-channel RGB images captured in the visible spectrum with deep neural networks (DNN). Thermal images can significantly contribute during the segmentation since thermal imaging cameras are capable of capturing details despite the weather and illumination conditions. Using infrared spectrum in semantic segmentation has many real-world use cases, such as autonomous driving, medical imaging, agriculture, defense industry, etc. Due to this wide range of use cases, designing accurate semantic segmentation algorithms with the help of infrared spectrum is an important challenge. One approach is to use both visible and infrared spectrum images as inputs. These methods can accomplish higher accuracy due to enriched input information, with the cost of extra effort for the alignment and processing of multiple inputs. Another approach is to use only thermal images, enabling less hardware cost for smaller use cases. Even though there are multiple surveys on semantic segmentation methods, the literature lacks a comprehensive survey centered explicitly around semantic segmentation using infrared spectrum. This work aims to fill this gap by presenting algorithms in the literature and categorizing them by their input images.
PDF Accepted to CVPR 2022 Perception Beyond the Visible Spectrum (PBVS) Workshop

论文截图

Lost in Compression: the Impact of Lossy Image Compression on Variable Size Object Detection within Infrared Imagery

Authors:Neelanjan Bhowmik, Jack W. Barker, Yona Falinie A. Gaus, Toby P. Breckon

Lossy image compression strategies allow for more efficient storage and transmission of data by encoding data to a reduced form. This is essential enable training with larger datasets on less storage-equipped environments. However, such compression can cause severe decline in performance of deep Convolution Neural Network (CNN) architectures even when mild compression is applied and the resulting compressed imagery is visually identical. In this work, we apply the lossy JPEG compression method with six discrete levels of increasing compression {95, 75, 50, 15, 10, 5} to infrared band (thermal) imagery. Our study quantitatively evaluates the affect that increasing levels of lossy compression has upon the performance of characteristically diverse object detection architectures (Cascade-RCNN, FSAF and Deformable DETR) with respect to varying sizes of objects present in the dataset. When training and evaluating on uncompressed data as a baseline, we achieve maximal mean Average Precision (mAP) of 0.823 with Cascade R-CNN across the FLIR dataset, outperforming prior work. The impact of the lossy compression is more extreme at higher compression levels (15, 10, 5) across all three CNN architectures. However, re-training models on lossy compressed imagery notably ameliorated performances for all three CNN models with an average increment of ~76% (at higher compression level 5). Additionally, we demonstrate the relative sensitivity of differing object areas {tiny, small, medium, large} with respect to the compression level. We show that tiny and small objects are more sensitive to compression than medium and large objects. Overall, Cascade R-CNN attains the maximal mAP across most of the object area categories.
PDF

论文截图

Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection

Authors:Zhuoling Li, Zhan Qu, Yang Zhou, Jianzhuang Liu, Haoqian Wang, Lihui Jiang

As an inherently ill-posed problem, depth estimation from single images is the most challenging part of monocular 3D object detection (M3OD). Many existing methods rely on preconceived assumptions to bridge the missing spatial information in monocular images, and predict a sole depth value for every object of interest. However, these assumptions do not always hold in practical applications. To tackle this problem, we propose a depth solving system that fully explores the visual clues from the subtasks in M3OD and generates multiple estimations for the depth of each target. Since the depth estimations rely on different assumptions in essence, they present diverse distributions. Even if some assumptions collapse, the estimations established on the remaining assumptions are still reliable. In addition, we develop a depth selection and combination strategy. This strategy is able to remove abnormal estimations caused by collapsed assumptions, and adaptively combine the remaining estimations into a single one. In this way, our depth solving system becomes more precise and robust. Exploiting the clues from multiple subtasks of M3OD and without introducing any extra information, our method surpasses the current best method by more than 20% relatively on the Moderate level of test split in the KITTI 3D object detection benchmark, while still maintaining real-time efficiency.
PDF This paper has been accepted as an oral presentation of CVPR2022

论文截图

NPU-BOLT: A Dataset for Bolt Object Detection in Natural Scene Images

Authors:Yadian Zhao, Zhenglin Yang, Chao Xu

Bolt joints are very common and important in engineering structures. Due to extreme service environment and load factors, bolts often get loose or even disengaged. To real-time or timely detect the loosed or disengaged bolts is an urgent need in practical engineering, which is critical to keep structural safety and service life. In recent years, many bolt loosening detection methods using deep learning and machine learning techniques have been proposed and are attracting more and more attention. However, most of these studies use bolt images captured in laboratory for deep leaning model training. The images are obtained in a well-controlled light, distance, and view angle conditions. Also, the bolted structures are well designed experimental structures with brand new bolts and the bolts are exposed without any shelter nearby. It is noted that in practical engineering, the above well controlled lab conditions are not easy realized and the real bolt images often have blur edges, oblique perspective, partial occlusion and indistinguishable colors etc., which make the trained models obtained in laboratory conditions loss their accuracy or fails. Therefore, the aim of this study is to develop a dataset named NPU-BOLT for bolt object detection in natural scene images and open it to researchers for public use and further development. In the first version of the dataset, it contains 337 samples of bolt joints images mainly in the natural environment, with image data sizes ranging from 400400 to 60004000, totaling approximately 1275 bolt targets. The bolt targets are annotated into four categories named blur bolt, bolt head, bolt nut and bolt side. The dataset is tested with advanced object detection models including yolov5, Faster-RCNN and CenterNet. The effectiveness of the dataset is validated.
PDF

论文截图

Enhanced Prototypical Learning for Unsupervised Domain Adaptation in LiDAR Semantic Segmentation

Authors:Eojindl Yi, Juyoung Yang, Junmo Kim

Despite its importance, unsupervised domain adaptation (UDA) on LiDAR semantic segmentation is a task that has not received much attention from the research community. Only recently, a completion-based 3D method has been proposed to tackle the problem and formally set up the adaptive scenarios. However, the proposed pipeline is complex, voxel-based and requires multi-stage inference, which inhibits it for real-time inference. We propose a range image-based, effective and efficient method for solving UDA on LiDAR segmentation. The method exploits class prototypes from the source domain to pseudo label target domain pixels, which is a research direction showing good performance in UDA for natural image semantic segmentation. Applying such approaches to LiDAR scans has not been considered because of the severe domain shift and lack of pre-trained feature extractor that is unavailable in the LiDAR segmentation setup. However, we show that proper strategies, including reconstruction-based pre-training, enhanced prototypes, and selective pseudo labeling based on distance to prototypes, is sufficient enough to enable the use of prototypical approaches. We evaluate the performance of our method on the recently proposed LiDAR segmentation UDA scenarios. Our method achieves remarkable performance among contemporary methods.
PDF accepted to IEEE International Conference on Robotics and Automation (ICRA2022) (7 pages, 1 figure, 4 tables)

论文截图

Accelerating the creation of instance segmentation training sets through bounding box annotation

Authors:Niels Sayez, Christophe De Vleeschouwer

Collecting image annotations remains a significant burden when deploying CNN in a specific applicative context. This is especially the case when the annotation consists in binary masks covering object instances. Our work proposes to delineate instances in three steps, based on a semi-automatic approach: (1) the extreme points of an object (left-most, right-most, top, bottom pixels) are manually defined, thereby providing the object bounding-box, (2) a universal automatic segmentation tool like Deep Extreme Cut is used to turn the bounded object into a segmentation mask that matches the extreme points; and (3) the predicted mask is manually corrected. Various strategies are then investigated to balance the human manual annotation resources between bounding-box definition and mask correction, including when the correction of instance masks is prioritized based on their overlap with other instance bounding-boxes, or the outcome of an instance segmentation model trained on a partially annotated dataset. Our experimental study considers a teamsport player segmentation task, and measures how the accuracy of the Panoptic-Deeplab instance segmentation model depends on the human annotation resources allocation strategy. It reveals that the sole definition of extreme points results in a model accuracy that would require up to 10 times more resources if the masks were defined through fully manual delineation of instances. When targeting higher accuracies, prioritizing the mask correction among the training set instances is also shown to save up to 80\% of correction annotation resources compared to a systematic frame by frame correction of instances, for a same trained instance segmentation model accuracy.
PDF

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录