2022-05-28 更新
A Physical-World Adversarial Attack Against 3D Face Recognition
Authors:Yanjie Li, Yiquan Li, Bin Xiao
3D face recognition systems have been widely employed in intelligent terminals, among which structured light imaging is a common method to measure the 3D shape. However, this method could be easily attacked, leading to inaccurate 3D face recognition. In this paper, we propose a novel, physically-achievable attack on the fringe structured light system, named structured light attack. The attack utilizes a projector to project optical adversarial fringes on faces to generate point clouds with well-designed noises. We firstly propose a 3D transform-invariant loss function to enhance the robustness of 3D adversarial examples in the physical-world attack. Then we reverse the 3D adversarial examples to the projector’s input to place noises on phase-shift images, which models the process of structured light imaging. A real-world structured light system is constructed for the attack and several state-of-the-art 3D face recognition neural networks are tested. Experiments show that our method can attack the physical system successfully and only needs minor modifications of projected images.
PDF 10 pages, 5 figures, Submit to NeurIPS 2022
论文截图
Denial-of-Service Attacks on Learned Image Compression
Authors:Kang Liu, Di Wu, Yiru Wang, Dan Feng, Benjamin Tan, Siddharth Garg
Deep learning techniques have shown promising results in image compression, with competitive bitrate and image reconstruction quality from compressed latent. However, while image compression has progressed towards higher peak signal-to-noise ratio (PSNR) and fewer bits per pixel (bpp), their robustness to corner-case images has never received deliberation. In this work, we, for the first time, investigate the robustness of image compression systems where imperceptible perturbation of input images can precipitate a significant increase in the bitrate of their compressed latent. To characterize the robustness of state-of-the-art learned image compression, we mount white and black-box attacks. Our results on several image compression models with various bitrate qualities show that they are surprisingly fragile, where the white-box attack achieves up to 56.326x and black-box 1.947x bpp change. To improve robustness, we propose a novel model which incorporates attention modules and a basic factorized entropy model, resulting in a promising trade-off between the PSNR/bpp ratio and robustness to adversarial attacks that surpasses existing learned image compressors.
PDF
论文截图
BppAttack: Stealthy and Efficient Trojan Attacks against Deep Neural Networks via Image Quantization and Contrastive Adversarial Learning
Authors:Zhenting Wang, Juan Zhai, Shiqing Ma
Deep neural networks are vulnerable to Trojan attacks. Existing attacks use visible patterns (e.g., a patch or image transformations) as triggers, which are vulnerable to human inspection. In this paper, we propose stealthy and efficient Trojan attacks, BppAttack. Based on existing biology literature on human visual systems, we propose to use image quantization and dithering as the Trojan trigger, making imperceptible changes. It is a stealthy and efficient attack without training auxiliary models. Due to the small changes made to images, it is hard to inject such triggers during training. To alleviate this problem, we propose a contrastive learning based approach that leverages adversarial attacks to generate negative sample pairs so that the learned trigger is precise and accurate. The proposed method achieves high attack success rates on four benchmark datasets, including MNIST, CIFAR-10, GTSRB, and CelebA. It also effectively bypasses existing Trojan defenses and human inspection. Our code can be found in https://github.com/RU-System-Software-and-Security/BppAttack.
PDF