Diffusion Models


2022-05-28 更新

Accelerating Diffusion Models via Early Stop of the Diffusion Process

Authors:Zhaoyang Lyu, Xudong XU, Ceyuan Yang, Dahua Lin, Bo Dai

Denoising Diffusion Probabilistic Models (DDPMs) have achieved impressive performance on various generation tasks. By modeling the reverse process of gradually diffusing the data distribution into a Gaussian distribution, generating a sample in DDPMs can be regarded as iteratively denoising a randomly sampled Gaussian noise. However, in practice DDPMs often need hundreds even thousands of denoising steps to obtain a high-quality sample from the Gaussian noise, leading to extremely low inference efficiency. In this work, we propose a principled acceleration strategy, referred to as Early-Stopped DDPM (ES-DDPM), for DDPMs. The key idea is to stop the diffusion process early where only the few initial diffusing steps are considered and the reverse denoising process starts from a non-Gaussian distribution. By further adopting a powerful pre-trained generative model, such as GAN and VAE, in ES-DDPM, sampling from the target non-Gaussian distribution can be efficiently achieved by diffusing samples obtained from the pre-trained generative model. In this way, the number of required denoising steps is significantly reduced. In the meantime, the sample quality of ES-DDPM also improves substantially, outperforming both the vanilla DDPM and the adopted pre-trained generative model. On extensive experiments across CIFAR-10, CelebA, ImageNet, LSUN-Bedroom and LSUN-Cat, ES-DDPM obtains promising acceleration effect and performance improvement over representative baseline methods. Moreover, ES-DDPM also demonstrates several attractive properties, including being orthogonal to existing acceleration methods, as well as simultaneously enabling both global semantic and local pixel-level control in image generation.
PDF

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录