人脸相关


2022-05-24 更新

FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders

Authors:Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Jiankang Deng, Xinchao Wang, Hakan Bilen, Yang You

Face recognition, as one of the most successful applications in artificial intelligence, has been widely used in security, administration, advertising, and healthcare. However, the privacy issues of public face datasets have attracted increasing attention in recent years. Previous works simply mask most areas of faces or synthesize samples using generative models to construct privacy-preserving face datasets, which overlooks the trade-off between privacy protection and data utility. In this paper, we propose a novel framework FaceMAE, where the face privacy and recognition performance are considered simultaneously. Firstly, randomly masked face images are used to train the reconstruction module in FaceMAE. We tailor the instance relation matching (IRM) module to minimize the distribution gap between real faces and FaceMAE reconstructed ones. During the deployment phase, we use trained FaceMAE to reconstruct images from masked faces of unseen identities without extra training. The risk of privacy leakage is measured based on face retrieval between reconstructed and original datasets. Experiments prove that the identities of reconstructed images are difficult to be retrieved. We also perform sufficient privacy-preserving face recognition on several public face datasets (i.e. CASIA-WebFace and WebFace260M). Compared to previous state of the arts, FaceMAE consistently \textbf{reduces at least 50\% error rate} on LFW, CFP-FP and AgeDB.
PDF A new paradigm for privacy-preserving face recognition via MAE

论文截图

A Novel Face-Anti Spoofing Neural Network Model For Face Recognition And Detection

Authors:Soham S. Sarpotdar

Face Recognition (FR) systems are being used in a variety of applications, including road crossings, banking, and mobile banking. The widespread use of FR systems has raised concerns about the safety of face biometrics against spoofing attacks, which use the use of a photo or video of a legitimate user’s face to gain illegal access to the resources or activities. Despite the development of several FAS or liveness detection methods (which determine whether a face is live or spoofed at the time of acquisition), the problem remains unsolved due to the difficulty of identifying discrimination and operationally reasonably priced spoof characteristics but also approaches. Additionally, certain facial portions are frequently repeated or correlate to image clutter, resulting in poor performance overall. This research proposes a face-anti-spoofing neural network model that outperforms existing models and has an efficiency of 0.89 percent.
PDF 9 Pages

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录