GAN


2022-05-24 更新

A Dynamic Weighted Tabular Method for Convolutional Neural Networks

Authors:Md Ifraham Iqbal, Md. Saddam Hossain Mukta, Ahmed Rafi Hasan

Traditional Machine Learning (ML) models like Support Vector Machine, Random Forest, and Logistic Regression are generally preferred for classification tasks on tabular datasets. Tabular data consists of rows and columns corresponding to instances and features, respectively. Past studies indicate that traditional classifiers often produce unsatisfactory results in complex tabular datasets. Hence, researchers attempt to use the powerful Convolutional Neural Networks (CNN) for tabular datasets. Recent studies propose several techniques like SuperTML, Conditional GAN (CTGAN), and Tabular Convolution (TAC) for applying Convolutional Neural Networks (CNN) on tabular data. These models outperform the traditional classifiers and substantially improve the performance on tabular data. This study introduces a novel technique, namely, Dynamic Weighted Tabular Method (DWTM), that uses feature weights dynamically based on statistical techniques to apply CNNs on tabular datasets. The method assigns weights dynamically to each feature based on their strength of associativity to the class labels. Each data point is converted into images and fed to a CNN model. The features are allocated image canvas space based on their weights. The DWTM is an improvement on the previously mentioned methods as it dynamically implements the entire experimental setting rather than using the static configuration provided in the previous methods. Furthermore, it uses the novel idea of using feature weights to create image canvas space. In this paper, the DWTM is applied to six benchmarked tabular datasets and it achieves outstanding performance (i.e., average accuracy = 95%) on all of them.
PDF

论文截图

Eyes Tell All: Irregular Pupil Shapes Reveal GAN-generated Faces

Authors:Hui Guo, Shu Hu, Xin Wang, Ming-Ching Chang, Siwei Lyu

Generative adversary network (GAN) generated high-realistic human faces have been used as profile images for fake social media accounts and are visually challenging to discern from real ones. In this work, we show that GAN-generated faces can be exposed via irregular pupil shapes. This phenomenon is caused by the lack of physiological constraints in the GAN models. We demonstrate that such artifacts exist widely in high-quality GAN-generated faces and further describe an automatic method to extract the pupils from two eyes and analysis their shapes for exposing the GAN-generated faces. Qualitative and quantitative evaluations of our method suggest its simplicity and effectiveness in distinguishing GAN-generated faces.
PDF Version 3, 7 pages

论文截图

Transformer-based out-of-distribution detection for clinically safe segmentation

Authors:Mark S Graham, Petru-Daniel Tudosiu, Paul Wright, Walter Hugo Lopez Pinaya, U Jean-Marie, Yee Mah, James Teo, Rolf H Jäger, David Werring, Parashkev Nachev, Sebastien Ourselin, M Jorge Cardoso

In a clinical setting it is essential that deployed image processing systems are robust to the full range of inputs they might encounter and, in particular, do not make confidently wrong predictions. The most popular approach to safe processing is to train networks that can provide a measure of their uncertainty, but these tend to fail for inputs that are far outside the training data distribution. Recently, generative modelling approaches have been proposed as an alternative; these can quantify the likelihood of a data sample explicitly, filtering out any out-of-distribution (OOD) samples before further processing is performed. In this work, we focus on image segmentation and evaluate several approaches to network uncertainty in the far-OOD and near-OOD cases for the task of segmenting haemorrhages in head CTs. We find all of these approaches are unsuitable for safe segmentation as they provide confidently wrong predictions when operating OOD. We propose performing full 3D OOD detection using a VQ-GAN to provide a compressed latent representation of the image and a transformer to estimate the data likelihood. Our approach successfully identifies images in both the far- and near-OOD cases. We find a strong relationship between image likelihood and the quality of a model’s segmentation, making this approach viable for filtering images unsuitable for segmentation. To our knowledge, this is the first time transformers have been applied to perform OOD detection on 3D image data.
PDF Accepted at MIDL 2022 (Oral)

论文截图

GR-GAN: Gradual Refinement Text-to-image Generation

Authors:Bo Yang, Fangxiang Feng, Xiaojie Wang

A good Text-to-Image model should not only generate high quality images, but also ensure the consistency between the text and the generated image. Previous models failed to simultaneously fix both sides well. This paper proposes a Gradual Refinement Generative Adversarial Network (GR-GAN) to alleviates the problem efficiently. A GRG module is designed to generate images from low resolution to high resolution with the corresponding text constraints from coarse granularity (sentence) to fine granularity (word) stage by stage, a ITM module is designed to provide image-text matching losses at both sentence-image level and word-region level for corresponding stages. We also introduce a new metric Cross-Model Distance (CMD) for simultaneously evaluating image quality and image-text consistency. Experimental results show GR-GAN significant outperform previous models, and achieve new state-of-the-art on both FID and CMD. A detailed analysis demonstrates the efficiency of different generation stages in GR-GAN.
PDF Accepted by ICME 2022

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录