2022-05-19 更新
Diffusion Models for Adversarial Purification
Authors:Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, Anima Anandkumar
Adversarial purification refers to a class of defense methods that remove adversarial perturbations using a generative model. These methods do not make assumptions on the form of attack and the classification model, and thus can defend pre-existing classifiers against unseen threats. However, their performance currently falls behind adversarial training methods. In this work, we propose DiffPure that uses diffusion models for adversarial purification: Given an adversarial example, we first diffuse it with a small amount of noise following a forward diffusion process, and then recover the clean image through a reverse generative process. To evaluate our method against strong adaptive attacks in an efficient and scalable way, we propose to use the adjoint method to compute full gradients of the reverse generative process. Extensive experiments on three image datasets including CIFAR-10, ImageNet and CelebA-HQ with three classifier architectures including ResNet, WideResNet and ViT demonstrate that our method achieves the state-of-the-art results, outperforming current adversarial training and adversarial purification methods, often by a large margin. Project page: https://diffpure.github.io.
PDF ICML 2022
论文截图
Vision Transformer Adapter for Dense Predictions
Authors:Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, Yu Qiao
This work investigates a simple yet powerful adapter for Vision Transformer (ViT). Unlike recent visual transformers that introduce vision-specific inductive biases into their architectures, ViT achieves inferior performance on dense prediction tasks due to lacking prior information of images. To solve this issue, we propose a Vision Transformer Adapter (ViT-Adapter), which can remedy the defects of ViT and achieve comparable performance to vision-specific models by introducing inductive biases via an additional architecture. Specifically, the backbone in our framework is a vanilla transformer that can be pre-trained with multi-modal data. When fine-tuning on downstream tasks, a modality-specific adapter is used to introduce the data and tasks’ prior information into the model, making it suitable for these tasks. We verify the effectiveness of our ViT-Adapter on multiple downstream tasks, including object detection, instance segmentation, and semantic segmentation. Notably, when using HTC++, our ViT-Adapter-L yields 60.1 box AP and 52.1 mask AP on COCO test-dev, surpassing Swin-L by 1.4 box AP and 1.0 mask AP. For semantic segmentation, our ViT-Adapter-L establishes a new state-of-the-art of 60.5 mIoU on ADE20K val, 0.6 points higher than SwinV2-G. We hope that the proposed ViT-Adapter could serve as an alternative for vision-specific transformers and facilitate future research. The code and models will be released at https://github.com/czczup/ViT-Adapter.
PDF
论文截图
Sequencer: Deep LSTM for Image Classification
Authors:Yuki Tatsunami, Masato Taki
In recent computer vision research, the advent of the Vision Transformer (ViT) has rapidly revolutionized various architectural design efforts: ViT achieved state-of-the-art image classification performance using self-attention found in natural language processing, and MLP-Mixer achieved competitive performance using simple multi-layer perceptrons. In contrast, several studies have also suggested that carefully redesigned convolutional neural networks (CNNs) can achieve advanced performance comparable to ViT without resorting to these new ideas. Against this background, there is growing interest in what inductive bias is suitable for computer vision. Here we propose Sequencer, a novel and competitive architecture alternative to ViT that provides a new perspective on these issues. Unlike ViTs, Sequencer models long-range dependencies using LSTMs rather than self-attention layers. We also propose a two-dimensional version of Sequencer module, where an LSTM is decomposed into vertical and horizontal LSTMs to enhance performance. Despite its simplicity, several experiments demonstrate that Sequencer performs impressively well: Sequencer2D-L, with 54M parameters, realizes 84.6% top-1 accuracy on only ImageNet-1K. Not only that, we show that it has good transferability and the robust resolution adaptability on double resolution-band.
PDF updated related works, appendix, and other minors