2022-05-13 更新
Anomaly Detection of Adversarial Examples using Class-conditional Generative Adversarial Networks
Authors:Hang Wang, David J. Miller, George Kesidis
Deep Neural Networks (DNNs) have been shown vulnerable to Test-Time Evasion attacks (TTEs, or adversarial examples), which, by making small changes to the input, alter the DNN’s decision. We propose an unsupervised attack detector on DNN classifiers based on class-conditional Generative Adversarial Networks (GANs). We model the distribution of clean data conditioned on the predicted class label by an Auxiliary Classifier GAN (AC-GAN). Given a test sample and its predicted class, three detection statistics are calculated based on the AC-GAN Generator and Discriminator. Experiments on image classification datasets under various TTE attacks show that our method outperforms previous detection methods. We also investigate the effectiveness of anomaly detection using different DNN layers (input features or internal-layer features) and demonstrate, as one might expect, that anomalies are harder to detect using features closer to the DNN’s output layer.
PDF
论文截图
D3T-GAN: Data-Dependent Domain Transfer GANs for Few-shot Image Generation
Authors:Xintian Wu, Huanyu Wang, Yiming Wu, Xi Li
As an important and challenging problem, few-shot image generation aims at generating realistic images through training a GAN model given few samples. A typical solution for few-shot generation is to transfer a well-trained GAN model from a data-rich source domain to the data-deficient target domain. In this paper, we propose a novel self-supervised transfer scheme termed D3T-GAN, addressing the cross-domain GANs transfer in few-shot image generation. Specifically, we design two individual strategies to transfer knowledge between generators and discriminators, respectively. To transfer knowledge between generators, we conduct a data-dependent transformation, which projects and reconstructs the target samples into the source generator space. Then, we perform knowledge transfer from transformed samples to generated samples. To transfer knowledge between discriminators, we design a multi-level discriminant knowledge distillation from the source discriminator to the target discriminator on both the real and fake samples. Extensive experiments show that our method improve the quality of generated images and achieves the state-of-the-art FID scores on commonly used datasets.
PDF