对抗攻击


2022-05-13 更新

Anomaly Detection of Adversarial Examples using Class-conditional Generative Adversarial Networks

Authors:Hang Wang, David J. Miller, George Kesidis

Deep Neural Networks (DNNs) have been shown vulnerable to Test-Time Evasion attacks (TTEs, or adversarial examples), which, by making small changes to the input, alter the DNN’s decision. We propose an unsupervised attack detector on DNN classifiers based on class-conditional Generative Adversarial Networks (GANs). We model the distribution of clean data conditioned on the predicted class label by an Auxiliary Classifier GAN (AC-GAN). Given a test sample and its predicted class, three detection statistics are calculated based on the AC-GAN Generator and Discriminator. Experiments on image classification datasets under various TTE attacks show that our method outperforms previous detection methods. We also investigate the effectiveness of anomaly detection using different DNN layers (input features or internal-layer features) and demonstrate, as one might expect, that anomalies are harder to detect using features closer to the DNN’s output layer.
PDF

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录