Vision Transformer


2022-05-03 更新

CLIP-Event: Connecting Text and Images with Event Structures

Authors:Manling Li, Ruochen Xu, Shuohang Wang, Luowei Zhou, Xudong Lin, Chenguang Zhu, Michael Zeng, Heng Ji, Shih-Fu Chang

Vision-language (V+L) pretraining models have achieved great success in supporting multimedia applications by understanding the alignments between images and text. While existing vision-language pretraining models primarily focus on understanding objects in images or entities in text, they often ignore the alignment at the level of events and their argument structures. In this work, we propose a contrastive learning framework to enforce vision-language pretraining models to comprehend events and associated argument (participant) roles. To achieve this, we take advantage of text information extraction technologies to obtain event structural knowledge, and utilize multiple prompt functions to contrast difficult negative descriptions by manipulating event structures. We also design an event graph alignment loss based on optimal transport to capture event argument structures. In addition, we collect a large event-rich dataset (106,875 images) for pretraining, which provides a more challenging image retrieval benchmark to assess the understanding of complicated lengthy sentences. Experiments show that our zero-shot CLIP-Event outperforms the state-of-the-art supervised model in argument extraction on Multimedia Event Extraction, achieving more than 5% absolute F-score gain in event extraction, as well as significant improvements on a variety of downstream tasks under zero-shot settings.
PDF

论文截图

Flamingo: a Visual Language Model for Few-Shot Learning

Authors:Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, Karen Simonyan

Building models that can be rapidly adapted to numerous tasks using only a handful of annotated examples is an open challenge for multimodal machine learning research. We introduce Flamingo, a family of Visual Language Models (VLM) with this ability. Flamingo models include key architectural innovations to: (i) bridge powerful pretrained vision-only and language-only models, (ii) handle sequences of arbitrarily interleaved visual and textual data, and (iii) seamlessly ingest images or videos as inputs. Thanks to their flexibility, Flamingo models can be trained on large-scale multimodal web corpora containing arbitrarily interleaved text and images, which is key to endow them with in-context few-shot learning capabilities. We perform a thorough evaluation of the proposed Flamingo models, exploring and measuring their ability to rapidly adapt to a variety of image and video understanding benchmarks. These include open-ended tasks such as visual question-answering, where the model is prompted with a question which it has to answer, captioning tasks, which evaluate the ability to describe a scene or an event, and close-ended tasks such as multiple choice visual question-answering. For tasks lying anywhere on this spectrum, we demonstrate that a single Flamingo model can achieve a new state of the art for few-shot learning, simply by prompting the model with task-specific examples. On many of these benchmarks, Flamingo actually surpasses the performance of models that are fine-tuned on thousands of times more task-specific data.
PDF

论文截图

In-N-Out Generative Learning for Dense Unsupervised Video Segmentation

Authors:Xiao Pan, Peike Li, Zongxin Yang, Huiling Zhou, Chang Zhou, Hongxia Yang, Jingren Zhou, Yi Yang

In this paper, we focus on unsupervised learning for Video Object Segmentation (VOS) which learns visual correspondence (i.e., the similarity between pixel-level features) from unlabeled videos. Previous methods are mainly based on the contrastive learning paradigm, which optimize either in image level or pixel level. Image-level optimization (e.g., the spatially pooled feature of ResNet) learns robust high-level semantics but is sub-optimal since the pixel-level features are optimized implicitly. By contrast, pixel-level optimization is more explicit, however, it is sensitive to the visual quality of training data and is not robust to object deformation. To complementarily perform these two levels of optimization in a unified framework, we propose the In-aNd-Out (INO) generative learning from a purely generative perspective with the help of naturally designed class tokens and patch tokens in Vision Transformer (ViT). Specifically, for image-level optimization, we force the out-view imagination from local to global views on class tokens, which helps capture high-level semantics, and we name it as out-generative learning. As to pixel-level optimization, we perform in-view masked image modeling on patch tokens, which recovers the corrupted parts of an image via inferring its fine-grained structure, and we term it as in-generative learning. To discover the temporal information better, we additionally force the inter-frame consistency from both feature and affinity matrix levels. Extensive experiments on DAVIS-2017 val and YouTube-VOS 2018 val show that our INO outperforms previous state-of-the-art methods by significant margins.
PDF

论文截图

Deeper Insights into ViTs Robustness towards Common Corruptions

Authors:Rui Tian, Zuxuan Wu, Qi Dai, Han Hu, Yu-Gang Jiang

Recent literature have shown design strategies from Convolutions Neural Networks (CNNs) benefit Vision Transformers (ViTs) in various vision tasks. However, it remains unclear how these design choices impact on robustness when transferred to ViTs. In this paper, we make the first attempt to investigate how CNN-like architectural designs and CNN-based data augmentation strategies impact on ViTs’ robustness towards common corruptions through an extensive and rigorous benchmarking. We demonstrate that overlapping patch embedding and convolutional Feed-Forward Network (FFN) boost performance on robustness. Furthermore, adversarial noise training is powerful on ViTs while fourier-domain augmentation fails. Moreover, we introduce a novel conditional method enabling input-varied augmentations from two angles: (1) Generating dynamic augmentation parameters conditioned on input images. It conduces to state-of-the-art performance on robustness through conditional convolutions; (2) Selecting most suitable augmentation strategy by an extra predictor helps to achieve the best trade-off between clean accuracy and robustness.
PDF

论文截图

SOFT: Softmax-free Transformer with Linear Complexity

Authors:Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao Xiang, Li Zhang

Vision transformers (ViTs) have pushed the state-of-the-art for various visual recognition tasks by patch-wise image tokenization followed by self-attention. However, the employment of self-attention modules results in a quadratic complexity in both computation and memory usage. Various attempts on approximating the self-attention computation with linear complexity have been made in Natural Language Processing. However, an in-depth analysis in this work shows that they are either theoretically flawed or empirically ineffective for visual recognition. We further identify that their limitations are rooted in keeping the softmax self-attention during approximations. Specifically, conventional self-attention is computed by normalizing the scaled dot-product between token feature vectors. Keeping this softmax operation challenges any subsequent linearization efforts. Based on this insight, for the first time, a softmax-free transformer or SOFT is proposed. To remove softmax in self-attention, Gaussian kernel function is used to replace the dot-product similarity without further normalization. This enables a full self-attention matrix to be approximated via a low-rank matrix decomposition. The robustness of the approximation is achieved by calculating its Moore-Penrose inverse using a Newton-Raphson method. Extensive experiments on ImageNet show that our SOFT significantly improves the computational efficiency of existing ViT variants. Crucially, with a linear complexity, much longer token sequences are permitted in SOFT, resulting in superior trade-off between accuracy and complexity.
PDF NeurIPS 2021 Spotlight. Project page at https://fudan-zvg.github.io/SOFT/

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录