2022-05-03 更新
Segment and Complete: Defending Object Detectors against Adversarial Patch Attacks with Robust Patch Detection
Authors:Jiang Liu, Alexander Levine, Chun Pong Lau, Rama Chellappa, Soheil Feizi
Object detection plays a key role in many security-critical systems. Adversarial patch attacks, which are easy to implement in the physical world, pose a serious threat to state-of-the-art object detectors. Developing reliable defenses for object detectors against patch attacks is critical but severely understudied. In this paper, we propose Segment and Complete defense (SAC), a general framework for defending object detectors against patch attacks through detection and removal of adversarial patches. We first train a patch segmenter that outputs patch masks which provide pixel-level localization of adversarial patches. We then propose a self adversarial training algorithm to robustify the patch segmenter. In addition, we design a robust shape completion algorithm, which is guaranteed to remove the entire patch from the images if the outputs of the patch segmenter are within a certain Hamming distance of the ground-truth patch masks. Our experiments on COCO and xView datasets demonstrate that SAC achieves superior robustness even under strong adaptive attacks with no reduction in performance on clean images, and generalizes well to unseen patch shapes, attack budgets, and unseen attack methods. Furthermore, we present the APRICOT-Mask dataset, which augments the APRICOT dataset with pixel-level annotations of adversarial patches. We show SAC can significantly reduce the targeted attack success rate of physical patch attacks. Our code is available at https://github.com/joellliu/SegmentAndComplete.
PDF CVPR 2022 camera ready
AGIC: Approximate Gradient Inversion Attack on Federated Learning
Authors:Jin Xu, Chi Hong, Jiyue Huang, Lydia Y. Chen, Jérémie Decouchant
Federated learning is a private-by-design distributed learning paradigm where clients train local models on their own data before a central server aggregates their local updates to compute a global model. Depending on the aggregation method used, the local updates are either the gradients or the weights of local learning models. Recent reconstruction attacks apply a gradient inversion optimization on the gradient update of a single minibatch to reconstruct the private data used by clients during training. As the state-of-the-art reconstruction attacks solely focus on single update, realistic adversarial scenarios are overlooked, such as observation across multiple updates and updates trained from multiple mini-batches. A few studies consider a more challenging adversarial scenario where only model updates based on multiple mini-batches are observable, and resort to computationally expensive simulation to untangle the underlying samples for each local step. In this paper, we propose AGIC, a novel Approximate Gradient Inversion Attack that efficiently and effectively reconstructs images from both model or gradient updates, and across multiple epochs. In a nutshell, AGIC (i) approximates gradient updates of used training samples from model updates to avoid costly simulation procedures, (ii) leverages gradient/model updates collected from multiple epochs, and (iii) assigns increasing weights to layers with respect to the neural network structure for reconstruction quality. We extensively evaluate AGIC on three datasets, CIFAR-10, CIFAR-100 and ImageNet. Our results show that AGIC increases the peak signal-to-noise ratio (PSNR) by up to 50% compared to two representative state-of-the-art gradient inversion attacks. Furthermore, AGIC is faster than the state-of-the-art simulation based attack, e.g., it is 5x faster when attacking FedAvg with 8 local steps in between model updates.
PDF
论文截图
Detecting Textual Adversarial Examples Based on Distributional Characteristics of Data Representations
Authors:Na Liu, Mark Dras, Wei Emma Zhang
Although deep neural networks have achieved state-of-the-art performance in various machine learning tasks, adversarial examples, constructed by adding small non-random perturbations to correctly classified inputs, successfully fool highly expressive deep classifiers into incorrect predictions. Approaches to adversarial attacks in natural language tasks have boomed in the last five years using character-level, word-level, phrase-level, or sentence-level textual perturbations. While there is some work in NLP on defending against such attacks through proactive methods, like adversarial training, there is to our knowledge no effective general reactive approaches to defence via detection of textual adversarial examples such as is found in the image processing literature. In this paper, we propose two new reactive methods for NLP to fill this gap, which unlike the few limited application baselines from NLP are based entirely on distribution characteristics of learned representations: we adapt one from the image processing literature (Local Intrinsic Dimensionality (LID)), and propose a novel one (MultiDistance Representation Ensemble Method (MDRE)). Adapted LID and MDRE obtain state-of-the-art results on character-level, word-level, and phrase-level attacks on the IMDB dataset as well as on the later two with respect to the MultiNLI dataset. For future research, we publish our code.
PDF 13 pages, RepL4NLP 2022