2022-04-29 更新
Unsupervised Multi-Modal Medical Image Registration via Discriminator-Free Image-to-Image Translation
Authors:Zekang Chen, Jia Wei, Rui Li
In clinical practice, well-aligned multi-modal images, such as Magnetic Resonance (MR) and Computed Tomography (CT), together can provide complementary information for image-guided therapies. Multi-modal image registration is essential for the accurate alignment of these multi-modal images. However, it remains a very challenging task due to complicated and unknown spatial correspondence between different modalities. In this paper, we propose a novel translation-based unsupervised deformable image registration approach to convert the multi-modal registration problem to a mono-modal one. Specifically, our approach incorporates a discriminator-free translation network to facilitate the training of the registration network and a patchwise contrastive loss to encourage the translation network to preserve object shapes. Furthermore, we propose to replace an adversarial loss, that is widely used in previous multi-modal image registration methods, with a pixel loss in order to integrate the output of translation into the target modality. This leads to an unsupervised method requiring no ground-truth deformation or pairs of aligned images for training. We evaluate four variants of our approach on the public Learn2Reg 2021 datasets \cite{hering2021learn2reg}. The experimental results demonstrate that the proposed architecture achieves state-of-the-art performance. Our code is available at https://github.com/heyblackC/DFMIR.
PDF Accepted in IJCAI 2022
论文截图
Learning to Extract Building Footprints from Off-Nadir Aerial Images
Authors:Jinwang Wang, Lingxuan Meng, Weijia Li, Wen Yang, Lei Yu, Gui-Song Xia
Extracting building footprints from aerial images is essential for precise urban mapping with photogrammetric computer vision technologies. Existing approaches mainly assume that the roof and footprint of a building are well overlapped, which may not hold in off-nadir aerial images as there is often a big offset between them. In this paper, we propose an offset vector learning scheme, which turns the building footprint extraction problem in off-nadir images into an instance-level joint prediction problem of the building roof and its corresponding “roof to footprint” offset vector. Thus the footprint can be estimated by translating the predicted roof mask according to the predicted offset vector. We further propose a simple but effective feature-level offset augmentation module, which can significantly refine the offset vector prediction by introducing little extra cost. Moreover, a new dataset, Buildings in Off-Nadir Aerial Images (BONAI), is created and released in this paper. It contains 268,958 building instances across 3,300 aerial images with fully annotated instance-level roof, footprint, and corresponding offset vector for each building. Experiments on the BONAI dataset demonstrate that our method achieves the state-of-the-art, outperforming other competitors by 3.37 to 7.39 points in F1-score. The codes, datasets, and trained models are available at https://github.com/jwwangchn/BONAI.git.
PDF