无监督/半监督/对比学习


2022-04-28 更新

ICAF: Iterative Contrastive Alignment Framework for Multimodal Abstractive Summarization

Authors:Zijian Zhang, Chang Shu, Youxin Chen, Jing Xiao, Qian Zhang, Lu Zheng

Integrating multimodal knowledge for abstractive summarization task is a work-in-progress research area, with present techniques inheriting fusion-then-generation paradigm. Due to semantic gaps between computer vision and natural language processing, current methods often treat multiple data points as separate objects and rely on attention mechanisms to search for connection in order to fuse together. In addition, missing awareness of cross-modal matching from many frameworks leads to performance reduction. To solve these two drawbacks, we propose an Iterative Contrastive Alignment Framework (ICAF) that uses recurrent alignment and contrast to capture the coherences between images and texts. Specifically, we design a recurrent alignment (RA) layer to gradually investigate fine-grained semantical relationships between image patches and text tokens. At each step during the encoding process, cross-modal contrastive losses are applied to directly optimize the embedding space. According to ROUGE, relevance scores, and human evaluation, our model outperforms the state-of-the-art baselines on MSMO dataset. Experiments on the applicability of our proposed framework and hyperparameters settings have been also conducted.
PDF Accepted by WCCI-IJCNN 2022 as an oral paper

论文截图

SCGC : Self-Supervised Contrastive Graph Clustering

Authors:Gayan K. Kulatilleke, Marius Portmann, Shekhar S. Chandra

Graph clustering discovers groups or communities within networks. Deep learning methods such as autoencoders (AE) extract effective clustering and downstream representations but cannot incorporate rich structural information. While Graph Neural Networks (GNN) have shown great success in encoding graph structure, typical GNNs based on convolution or attention variants suffer from over-smoothing, noise, heterophily, are computationally expensive and typically require the complete graph being present. Instead, we propose Self-Supervised Contrastive Graph Clustering (SCGC), which imposes graph-structure via contrastive loss signals to learn discriminative node representations and iteratively refined soft cluster labels. We also propose SCGC, with a more effective, novel, Influence Augmented Contrastive (IAC) loss to fuse richer structural information, and half the original model parameters. SCGC() is faster with simple linear units, completely eliminate convolutions and attention of traditional GNNs, yet efficiently incorporates structure. It is impervious to layer depth and robust to over-smoothing, incorrect edges and heterophily. It is scalable by batching, a limitation in many prior GNN models, and trivially parallelizable. We obtain significant improvements over state-of-the-art on a wide range of benchmark graph datasets, including images, sensor data, text, and citation networks efficiently. Specifically, 20% on ARI and 18% on NMI for DBLP; overall 55% reduction in training time and overall, 81% reduction on inference time. Our code is available at : https://github.com/gayanku/SCGC
PDF 9 pages, 5 figures

论文截图

Contrastive learning-based computational histopathology predict differential expression of cancer driver genes

Authors:Haojie Huang, Gongming Zhou, Xuejun Liu, Lei Deng, Chen Wu, Dachuan Zhang, Hui Liu

Digital pathological analysis is run as the main examination used for cancer diagnosis. Recently, deep learning-driven feature extraction from pathology images is able to detect genetic variations and tumor environment, but few studies focus on differential gene expression in tumor cells. In this paper, we propose a self-supervised contrastive learning framework, HistCode, to infer differential gene expressions from whole slide images (WSIs). We leveraged contrastive learning on large-scale unannotated WSIs to derive slide-level histopathological feature in latent space, and then transfer it to tumor diagnosis and prediction of differentially expressed cancer driver genes. Our extensive experiments showed that our method outperformed other state-of-the-art models in tumor diagnosis tasks, and also effectively predicted differential gene expressions. Interestingly, we found the higher fold-changed genes can be more precisely predicted. To intuitively illustrate the ability to extract informative features from pathological images, we spatially visualized the WSIs colored by the attentive scores of image tiles. We found that the tumor and necrosis areas were highly consistent with the annotations of experienced pathologists. Moreover, the spatial heatmap generated by lymphocyte-specific gene expression patterns was also consistent with the manually labeled WSI.
PDF

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录