2022-04-28 更新
Improving the Transferability of Adversarial Examples with Restructure Embedded Patches
Authors:Huipeng Zhou, Yu-an Tan, Yajie Wang, Haoran Lyu, Shangbo Wu, Yuanzhang Li
Vision transformers (ViTs) have demonstrated impressive performance in various computer vision tasks. However, the adversarial examples generated by ViTs are challenging to transfer to other networks with different structures. Recent attack methods do not consider the specificity of ViTs architecture and self-attention mechanism, which leads to poor transferability of the generated adversarial samples by ViTs. We attack the unique self-attention mechanism in ViTs by restructuring the embedded patches of the input. The restructured embedded patches enable the self-attention mechanism to obtain more diverse patches connections and help ViTs keep regions of interest on the object. Therefore, we propose an attack method against the unique self-attention mechanism in ViTs, called Self-Attention Patches Restructure (SAPR). Our method is simple to implement yet efficient and applicable to any self-attention based network and gradient transferability-based attack methods. We evaluate attack transferability on black-box models with different structures. The result show that our method generates adversarial examples on white-box ViTs with higher transferability and higher image quality. Our research advances the development of black-box transfer attacks on ViTs and demonstrates the feasibility of using white-box ViTs to attack other black-box models.
PDF
论文截图
Defending Against Person Hiding Adversarial Patch Attack with a Universal White Frame
Authors:Youngjoon Yu, Hong Joo Lee, Hakmin Lee, Yong Man Ro
Object detection has attracted great attention in the computer vision area and has emerged as an indispensable component in many vision systems. In the era of deep learning, many high-performance object detection networks have been proposed. Although these detection networks show high performance, they are vulnerable to adversarial patch attacks. Changing the pixels in a restricted region can easily fool the detection network in the physical world. In particular, person-hiding attacks are emerging as a serious problem in many safety-critical applications such as autonomous driving and surveillance systems. Although it is necessary to defend against an adversarial patch attack, very few efforts have been dedicated to defending against person-hiding attacks. To tackle the problem, in this paper, we propose a novel defense strategy that mitigates a person-hiding attack by optimizing defense patterns, while previous methods optimize the model. In the proposed method, a frame-shaped pattern called a ‘universal white frame’ (UWF) is optimized and placed on the outside of the image. To defend against adversarial patch attacks, UWF should have three properties (i) suppressing the effect of the adversarial patch, (ii) maintaining its original prediction, and (iii) applicable regardless of images. To satisfy the aforementioned properties, we propose a novel pattern optimization algorithm that can defend against the adversarial patch. Through comprehensive experiments, we demonstrate that the proposed method effectively defends against the adversarial patch attack.
PDF Submitted by NeurIPS 2021 with response letter to the anonymous reviewers’ comments