2022-04-27 更新
ProCST: Boosting Semantic Segmentation using Progressive Cyclic Style-Transfer
Authors:Shahaf Ettedgui, Shady Abu-Hussein, Raja Giryes
Using synthetic data for training neural networks that achieve good performance on real-world data is an important task as it has the potential to reduce the need for costly data annotation. Yet, a network that is trained on synthetic data alone does not perform well on real data due to the domain gap between the two. Reducing this gap, also known as domain adaptation, has been widely studied in recent years. In the unsupervised domain adaptation (UDA) framework, unlabeled real data is used during training with labeled synthetic data to obtain a neural network that performs well on real data. In this work, we focus on image data. For the semantic segmentation task, it has been shown that performing image-to-image translation from source to target, and then training a network for segmentation on source annotations - leads to poor results. Therefore a joint training of both is essential, which has been a common practice in many techniques. Yet, closing the large domain gap between the source and the target by directly performing the adaptation between the two is challenging. In this work, we propose a novel two-stage framework for improving domain adaptation techniques. In the first step, we progressively train a multi-scale neural network to perform an initial transfer between the source data to the target data. We denote the new transformed data as “Source in Target” (SiT). Then, we use the generated SiT data as the input to any standard UDA approach. This new data has a reduced domain gap from the desired target domain, and the applied UDA approach further closes the gap. We demonstrate the improvement achieved by our framework with two state-of-the-art methods for semantic segmentation, DAFormer and ProDA, on two UDA tasks, GTA5 to Cityscapes and Synthia to Cityscapes. Code and state-of-the-art checkpoints of ProCST+DAFormer are provided.
PDF Code available at https://github.com/shahaf1313/ProCST
论文截图
PDE-based Group Equivariant Convolutional Neural Networks
Authors:Bart Smets, Jim Portegies, Erik Bekkers, Remco Duits
We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs). In this framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the layer’s trainable weights. Formulating our PDEs on homogeneous spaces allows these networks to be designed with built-in symmetries such as rotation in addition to the standard translation equivariance of CNNs. Having all the desired symmetries included in the design obviates the need to include them by means of costly techniques such as data augmentation. We will discuss our PDE-based G-CNNs (PDE-G-CNNs) in a general homogeneous space setting while also going into the specifics of our primary case of interest: roto-translation equivariance. We solve the PDE of interest by a combination of linear group convolutions and non-linear morphological group convolutions with analytic kernel approximations that we underpin with formal theorems. Our kernel approximations allow for fast GPU-implementation of the PDE-solvers, we release our implementation with this article in the form of the LieTorch extension to PyTorch, available at https://gitlab.com/bsmetsjr/lietorch . Just like for linear convolution a morphological convolution is specified by a kernel that we train in our PDE-G-CNNs. In PDE-G-CNNs we do not use non-linearities such as max/min-pooling and ReLUs as they are already subsumed by morphological convolutions. We present a set of experiments to demonstrate the strength of the proposed PDE-G-CNNs in increasing the performance of deep learning based imaging applications with far fewer parameters than traditional CNNs.
PDF 27 pages, 18 figures. v2 changes: - mentioned KerCNNs - added section Generalization of G-CNNs - clarification that the experiments utilized automatic differentiation and SGD. v3 changes: - streamlined theoretical framework - formulation and proof Thm.1 & 2 - expanded experiments. v4 changes: typos in Prop.5 and (20) v5 changes: minor revision
论文截图
ROMA: Cross-Domain Region Similarity Matching for Unpaired Nighttime Infrared to Daytime Visible Video Translation
Authors:Zhenjie Yu, Kai Chen, Shuang Li, Bingfeng Han, Chi Harold Liu, Shuigen Wang
Infrared cameras are often utilized to enhance the night vision since the visible light cameras exhibit inferior efficacy without sufficient illumination. However, infrared data possesses inadequate color contrast and representation ability attributed to its intrinsic heat-related imaging principle. This makes it arduous to capture and analyze information for human beings, meanwhile hindering its application. Although, the domain gaps between unpaired nighttime infrared and daytime visible videos are even huger than paired ones that captured at the same time, establishing an effective translation mapping will greatly contribute to various fields. In this case, the structural knowledge within nighttime infrared videos and semantic information contained in the translated daytime visible pairs could be utilized simultaneously. To this end, we propose a tailored framework ROMA that couples with our introduced cRoss-domain regiOn siMilarity mAtching technique for bridging the huge gaps. To be specific, ROMA could efficiently translate the unpaired nighttime infrared videos into fine-grained daytime visible ones, meanwhile maintain the spatiotemporal consistency via matching the cross-domain region similarity. Furthermore, we design a multiscale region-wise discriminator to distinguish the details from synthesized visible results and real references. Extensive experiments and evaluations for specific applications indicate ROMA outperforms the state-of-the-art methods. Moreover, we provide a new and challenging dataset encouraging further research for unpaired nighttime infrared and daytime visible video translation, named InfraredCity. In particular, it consists of 9 long video clips including City, Highway and Monitor scenarios. All clips could be split into 603,142 frames in total, which are 20 times larger than the recently released daytime infrared-to-visible dataset IRVI.
PDF