GAN


2022-04-27 更新

Unsupervised Learning of Efficient Geometry-Aware Neural Articulated Representations

Authors:Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada

We propose an unsupervised method for 3D geometry-aware representation learning of articulated objects. Though photorealistic images of articulated objects can be rendered with explicit pose control through existing 3D neural representations, these methods require ground truth 3D pose and foreground masks for training, which are expensive to obtain. We obviate this need by learning the representations with GAN training. From random poses and latent vectors, the generator is trained to produce realistic images of articulated objects by adversarial training. To avoid a large computational cost for GAN training, we propose an efficient neural representation for articulated objects based on tri-planes and then present a GAN-based framework for its unsupervised training. Experiments demonstrate the efficiency of our method and show that GAN-based training enables learning of controllable 3D representations without supervision.
PDF 19 pages, project page https://nogu-atsu.github.io/ENARF-GAN/

论文截图

Reinforcing Generated Images via Meta-learning for One-Shot Fine-Grained Visual Recognition

Authors:Satoshi Tsutsui, Yanwei Fu, David Crandall

One-shot fine-grained visual recognition often suffers from the problem of having few training examples for new fine-grained classes. To alleviate this problem, off-the-shelf image generation techniques based on Generative Adversarial Networks (GANs) can potentially create additional training images. However, these GAN-generated images are often not helpful for actually improving the accuracy of one-shot fine-grained recognition. In this paper, we propose a meta-learning framework to combine generated images with original images, so that the resulting “hybrid” training images improve one-shot learning. Specifically, the generic image generator is updated by a few training instances of novel classes, and a Meta Image Reinforcing Network (MetaIRNet) is proposed to conduct one-shot fine-grained recognition as well as image reinforcement. Our experiments demonstrate consistent improvement over baselines on one-shot fine-grained image classification benchmarks. Furthermore, our analysis shows that the reinforced images have more diversity compared to the original and GAN-generated images.
PDF Accepted to PAMI 2022. arXiv admin note: substantial text overlap with arXiv:1911.07164

论文截图

Restricted Black-box Adversarial Attack Against DeepFake Face Swapping

Authors:Junhao Dong, Yuan Wang, Jianhuang Lai, Xiaohua Xie

DeepFake face swapping presents a significant threat to online security and social media, which can replace the source face in an arbitrary photo/video with the target face of an entirely different person. In order to prevent this fraud, some researchers have begun to study the adversarial methods against DeepFake or face manipulation. However, existing works focus on the white-box setting or the black-box setting driven by abundant queries, which severely limits the practical application of these methods. To tackle this problem, we introduce a practical adversarial attack that does not require any queries to the facial image forgery model. Our method is built on a substitute model persuing for face reconstruction and then transfers adversarial examples from the substitute model directly to inaccessible black-box DeepFake models. Specially, we propose the Transferable Cycle Adversary Generative Adversarial Network (TCA-GAN) to construct the adversarial perturbation for disrupting unknown DeepFake systems. We also present a novel post-regularization module for enhancing the transferability of generated adversarial examples. To comprehensively measure the effectiveness of our approaches, we construct a challenging benchmark of DeepFake adversarial attacks for future development. Extensive experiments impressively show that the proposed adversarial attack method makes the visual quality of DeepFake face images plummet so that they are easier to be detected by humans and algorithms. Moreover, we demonstrate that the proposed algorithm can be generalized to offer face image protection against various face translation methods.
PDF

论文截图

StyleT2F: Generating Human Faces from Textual Description Using StyleGAN2

Authors:Mohamed Shawky Sabae, Mohamed Ahmed Dardir, Remonda Talaat Eskarous, Mohamed Ramzy Ebbed

AI-driven image generation has improved significantly in recent years. Generative adversarial networks (GANs), like StyleGAN, are able to generate high-quality realistic data and have artistic control over the output, as well. In this work, we present StyleT2F, a method of controlling the output of StyleGAN2 using text, in order to be able to generate a detailed human face from textual description. We utilize StyleGAN’s latent space to manipulate different facial features and conditionally sample the required latent code, which embeds the facial features mentioned in the input text. Our method proves to capture the required features correctly and shows consistency between the input text and the output images. Moreover, our method guarantees disentanglement on manipulating a wide range of facial features that sufficiently describes a human face.
PDF

论文截图

Evolutionary latent space search for driving human portrait generation

Authors:Benjamín Machín, Sergio Nesmachnow, Jamal Toutouh

This article presents an evolutionary approach for synthetic human portraits generation based on the latent space exploration of a generative adversarial network. The idea is to produce different human face images very similar to a given target portrait. The approach applies StyleGAN2 for portrait generation and FaceNet for face similarity evaluation. The evolutionary search is based on exploring the real-coded latent space of StyleGAN2. The main results over both synthetic and real images indicate that the proposed approach generates accurate and diverse solutions, which represent realistic human portraits. The proposed research can contribute to improving the security of face recognition systems.
PDF This paper was accepted and presented during the 2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)

论文截图

Transferring Unconditional to Conditional GANs with Hyper-Modulation

Authors:Héctor Laria, Yaxing Wang, Joost van de Weijer, Bogdan Raducanu

GANs have matured in recent years and are able to generate high-resolution, realistic images. However, the computational resources and the data required for the training of high-quality GANs are enormous, and the study of transfer learning of these models is therefore an urgent topic. Many of the available high-quality pretrained GANs are unconditional (like StyleGAN). For many applications, however, conditional GANs are preferable, because they provide more control over the generation process, despite often suffering more training difficulties. Therefore, in this paper, we focus on transferring from high-quality pretrained unconditional GANs to conditional GANs. This requires architectural adaptation of the pretrained GAN to perform the conditioning. To this end, we propose hyper-modulated generative networks that allow for shared and complementary supervision. To prevent the additional weights of the hypernetwork to overfit, with subsequent mode collapse on small target domains, we introduce a self-initialization procedure that does not require any real data to initialize the hypernetwork parameters. To further improve the sample efficiency of the transfer, we apply contrastive learning in the discriminator, which effectively works on very limited batch sizes. In extensive experiments, we validate the efficiency of the hypernetworks, self-initialization and contrastive loss for knowledge transfer on standard benchmarks.
PDF 19 pages, 20 figures, to be published in CVPRW 2022. Code at https://github.com/hecoding/Hyper-Modulation

论文截图

A Comprehensive Survey on Data-Efficient GANs in Image Generation

Authors:Ziqiang Li, Xintian Wu, Beihao Xia, Jing Zhang, Chaoyue Wang, Bin Li

Generative Adversarial Networks (GANs) have achieved remarkable achievements in image synthesis. These successes of GANs rely on large scale datasets, requiring too much cost. With limited training data, how to stable the training process of GANs and generate realistic images have attracted more attention. The challenges of Data-Efficient GANs (DE-GANs) mainly arise from three aspects: (i) Mismatch Between Training and Target Distributions, (ii) Overfitting of the Discriminator, and (iii) Imbalance Between Latent and Data Spaces. Although many augmentation and pre-training strategies have been proposed to alleviate these issues, there lacks a systematic survey to summarize the properties, challenges, and solutions of DE-GANs. In this paper, we revisit and define DE-GANs from the perspective of distribution optimization. We conclude and analyze the challenges of DE-GANs. Meanwhile, we propose a taxonomy, which classifies the existing methods into three categories: Data Selection, GANs Optimization, and Knowledge Sharing. Last but not the least, we attempt to highlight the current problems and the future directions.
PDF Under review

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录