2022-04-26 更新
StyleGAN-Human: A Data-Centric Odyssey of Human Generation
Authors:Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen Qian, Chen Change Loy, Wayne Wu, Ziwei Liu
Unconditional human image generation is an important task in vision and graphics, which enables various applications in the creative industry. Existing studies in this field mainly focus on “network engineering” such as designing new components and objective functions. This work takes a data-centric perspective and investigates multiple critical aspects in “data engineering”, which we believe would complement the current practice. To facilitate a comprehensive study, we collect and annotate a large-scale human image dataset with over 230K samples capturing diverse poses and textures. Equipped with this large dataset, we rigorously investigate three essential factors in data engineering for StyleGAN-based human generation, namely data size, data distribution, and data alignment. Extensive experiments reveal several valuable observations w.r.t. these aspects: 1) Large-scale data, more than 40K images, are needed to train a high-fidelity unconditional human generation model with vanilla StyleGAN. 2) A balanced training set helps improve the generation quality with rare face poses compared to the long-tailed counterpart, whereas simply balancing the clothing texture distribution does not effectively bring an improvement. 3) Human GAN models with body centers for alignment outperform models trained using face centers or pelvis points as alignment anchors. In addition, a model zoo and human editing applications are demonstrated to facilitate future research in the community.
PDF Technical Report. Project page: https://stylegan-human.github.io/ Code and models: https://github.com/stylegan-human/StyleGAN-Human/
SE-GAN: Skeleton Enhanced GAN-based Model for Brush Handwriting Font Generation
Authors:Shaozu Yuan, Ruixue Liu, Meng Chen, Baoyang Chen, Zhijie Qiu, Xiaodong He
Previous works on font generation mainly focus on the standard print fonts where character’s shape is stable and strokes are clearly separated. There is rare research on brush handwriting font generation, which involves holistic structure changes and complex strokes transfer. To address this issue, we propose a novel GAN-based image translation model by integrating the skeleton information. We first extract the skeleton from training images, then design an image encoder and a skeleton encoder to extract corresponding features. A self-attentive refined attention module is devised to guide the model to learn distinctive features between different domains. A skeleton discriminator is involved to first synthesize the skeleton image from the generated image with a pre-trained generator, then to judge its realness to the target one. We also contribute a large-scale brush handwriting font image dataset with six styles and 15,000 high-resolution images. Both quantitative and qualitative experimental results demonstrate the competitiveness of our proposed model.
PDF Accepted by ICME 2022