2022-04-25 更新
Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network
Authors:Shanshan Lao, Yuan Gong, Shuwei Shi, Sidi Yang, Tianhe Wu, Jiahao Wang, Weihao Xia, Yujiu Yang
Image quality assessment (IQA) algorithm aims to quantify the human perception of image quality. Unfortunately, there is a performance drop when assessing the distortion images generated by generative adversarial network (GAN) with seemingly realistic texture. In this work, we conjecture that this maladaptation lies in the backbone of IQA models, where patch-level prediction methods use independent image patches as input to calculate their scores separately, but lack spatial relationship modeling among image patches. Therefore, we propose an Attention-based Hybrid Image Quality Assessment Network (AHIQ) to deal with the challenge and get better performance on the GAN-based IQA task. Firstly, we adopt a two-branch architecture, including a vision transformer (ViT) branch and a convolutional neural network (CNN) branch for feature extraction. The hybrid architecture combines interaction information among image patches captured by ViT and local texture details from CNN. To make the features from shallow CNN more focused on the visually salient region, a deformable convolution is applied with the help of semantic information from the ViT branch. Finally, we use a patch-wise score prediction module to obtain the final score. The experiments show that our model outperforms the state-of-the-art methods on four standard IQA datasets and AHIQ ranked first on the Full Reference (FR) track of the NTIRE 2022 Perceptual Image Quality Assessment Challenge.
PDF
论文截图
Diverse Instance Discovery: Vision-Transformer for Instance-Aware Multi-Label Image Recognition
Authors:Yunqing Hu, Xuan Jin, Yin Zhang, Haiwen Hong, Jingfeng Zhang, Feihu Yan, Yuan He, Hui Xue
Previous works on multi-label image recognition (MLIR) usually use CNNs as a starting point for research. In this paper, we take pure Vision Transformer (ViT) as the research base and make full use of the advantages of Transformer with long-range dependency modeling to circumvent the disadvantages of CNNs limited to local receptive field. However, for multi-label images containing multiple objects from different categories, scales, and spatial relations, it is not optimal to use global information alone. Our goal is to leverage ViT’s patch tokens and self-attention mechanism to mine rich instances in multi-label images, named diverse instance discovery (DiD). To this end, we propose a semantic category-aware module and a spatial relationship-aware module, respectively, and then combine the two by a re-constraint strategy to obtain instance-aware attention maps. Finally, we propose a weakly supervised object localization-based approach to extract multi-scale local features, to form a multi-view pipeline. Our method requires only weakly supervised information at the label level, no additional knowledge injection or other strongly supervised information is required. Experiments on three benchmark datasets show that our method significantly outperforms previous works and achieves state-of-the-art results under fair experimental comparisons.
PDF Accepted to ICME 2022
论文截图
Towards 3D Scene Reconstruction from Locally Scale-Aligned Monocular Video Depth
Authors:Guangkai Xu, Wei Yin, Hao Chen, Kai Cheng, Feng Zhao, Chunhua Shen
Existing monocular depth estimation methods have achieved excellent robustness in diverse scenes, but they can only retrieve affine-invariant depth, up to an unknown scale and shift. However, in some video-based scenarios such as video depth estimation and 3D scene reconstruction from a video, the unknown scale and shift residing in per-frame prediction may cause the depth inconsistency. To solve this problem, we propose a locally weighted linear regression method to recover the scale and shift with very sparse anchor points, which ensures the scale consistency along consecutive frames. Extensive experiments show that our method can boost the performance of existing state-of-the-art approaches by 50% at most over several zero-shot benchmarks. Besides, we merge over 6.3 million RGBD images to train strong and robust depth models. Our produced ResNet50-backbone model even outperforms the state-of-the-art DPT ViT-Large model. Combining with geometry-based reconstruction methods, we formulate a new dense 3D scene reconstruction pipeline, which benefits from both the scale consistency of sparse points and the robustness of monocular methods. By performing the simple per-frame prediction over a video, the accurate 3D scene shape can be recovered.
PDF 22 pages