2022-04-23 更新
AutoAlign: Pixel-Instance Feature Aggregation for Multi-Modal 3D Object Detection
Authors:Zehui Chen, Zhenyu Li, Shiquan Zhang, Liangji Fang, Qinghong Jiang, Feng Zhao, Bolei Zhou, Hang Zhao
Object detection through either RGB images or the LiDAR point clouds has been extensively explored in autonomous driving. However, it remains challenging to make these two data sources complementary and beneficial to each other. In this paper, we propose \textit{AutoAlign}, an automatic feature fusion strategy for 3D object detection. Instead of establishing deterministic correspondence with camera projection matrix, we model the mapping relationship between the image and point clouds with a learnable alignment map. This map enables our model to automate the alignment of non-homogenous features in a dynamic and data-driven manner. Specifically, a cross-attention feature alignment module is devised to adaptively aggregate \textit{pixel-level} image features for each voxel. To enhance the semantic consistency during feature alignment, we also design a self-supervised cross-modal feature interaction module, through which the model can learn feature aggregation with \textit{instance-level} feature guidance. Extensive experimental results show that our approach can lead to 2.3 mAP and 7.0 mAP improvements on the KITTI and nuScenes datasets, respectively. Notably, our best model reaches 70.9 NDS on the nuScenes testing leaderboard, achieving competitive performance among various state-of-the-arts.
PDF Accepted to IJCAI2022
论文截图
Unseen Object Instance Segmentation with Fully Test-time RGB-D Embeddings Adaptation
Authors:Lu Zhang, Siqi Zhang, Xu Yang, Zhiyong Liu
Segmenting unseen objects is a crucial ability for the robot since it may encounter new environments during the operation. Recently, a popular solution is leveraging RGB-D features of large-scale synthetic data and directly applying the model to unseen real-world scenarios. However, even though depth data have fair generalization ability, the domain shift due to the Sim2Real gap is inevitable, which presents a key challenge to the unseen object instance segmentation (UOIS) model. To tackle this problem, we re-emphasize the adaptation process across Sim2Real domains in this paper. Specifically, we propose a framework to conduct the Fully Test-time RGB-D Embeddings Adaptation (FTEA) based on parameters of the BatchNorm layer. To construct the learning objective for test-time back-propagation, we propose a novel non-parametric entropy objective that can be implemented without explicit classification layers. Moreover, we design a cross-modality knowledge distillation module to encourage the information transfer during test time. The proposed method can be efficiently conducted with test-time images, without requiring annotations or revisiting the large-scale synthetic training data. Besides significant time savings, the proposed method consistently improves segmentation results on both overlap and boundary metrics, achieving state-of-the-art performances on two real-world RGB-D image datasets. We hope our work could draw attention to the test-time adaptation and reveal a promising direction for robot perception in unseen environments.
PDF 10 pages, 6 figures
论文截图
DooDLeNet: Double DeepLab Enhanced Feature Fusion for Thermal-color Semantic Segmentation
Authors:Oriel Frigo, Lucien Martin-Gaffé, Catherine Wacongne
In this paper we present a new approach for feature fusion between RGB and LWIR Thermal images for the task of semantic segmentation for driving perception. We propose DooDLeNet, a double DeepLab architecture with specialized encoder-decoders for thermal and color modalities and a shared decoder for final segmentation. We combine two strategies for feature fusion: confidence weighting and correlation weighting. We report state-of-the-art mean IoU results on the MF dataset.
PDF 8 pages, 5 figures