I2I Translation


2022-04-15 更新

Improving Adversarial Transferability with Gradient Refining

Authors:Guoqiu Wang, Huanqian Yan, Ying Guo, Xingxing Wei

Deep neural networks are vulnerable to adversarial examples, which are crafted by adding human-imperceptible perturbations to original images. Most existing adversarial attack methods achieve nearly 100% attack success rates under the white-box setting, but only achieve relatively low attack success rates under the black-box setting. To improve the transferability of adversarial examples for the black-box setting, several methods have been proposed, e.g., input diversity, translation-invariant attack, and momentum-based attack. In this paper, we propose a method named Gradient Refining, which can further improve the adversarial transferability by correcting useless gradients introduced by input diversity through multiple transformations. Our method is generally applicable to many gradient-based attack methods combined with input diversity. Extensive experiments are conducted on the ImageNet dataset and our method can achieve an average transfer success rate of 82.07% for three different models under single-model setting, which outperforms the other state-of-the-art methods by a large margin of 6.0% averagely. And we have applied the proposed method to the competition CVPR 2021 Unrestricted Adversarial Attacks on ImageNet organized by Alibaba and won the second place in attack success rates among 1558 teams.
PDF Accepted at CVPR 2021 Workshop on Adversarial Machine Learning in Real-World Computer Vision Systems and Online Challenges. The extension vision of this paper, please refer to arxiv:2203.13479

论文截图

2022-04-15 更新

ConDor: Self-Supervised Canonicalization of 3D Pose for Partial Shapes

Authors:Rahul Sajnani, Adrien Poulenard, Jivitesh Jain, Radhika Dua, Leonidas J. Guibas, Srinath Sridhar

Progress in 3D object understanding has relied on manually canonicalized shape datasets that contain instances with consistent position and orientation (3D pose). This has made it hard to generalize these methods to in-the-wild shapes, eg., from internet model collections or depth sensors. ConDor is a self-supervised method that learns to Canonicalize the 3D orientation and position for full and partial 3D point clouds. We build on top of Tensor Field Networks (TFNs), a class of permutation- and rotation-equivariant, and translation-invariant 3D networks. During inference, our method takes an unseen full or partial 3D point cloud at an arbitrary pose and outputs an equivariant canonical pose. During training, this network uses self-supervision losses to learn the canonical pose from an un-canonicalized collection of full and partial 3D point clouds. ConDor can also learn to consistently co-segment object parts without any supervision. Extensive quantitative results on four new metrics show that our approach outperforms existing methods while enabling new applications such as operation on depth images and annotation transfer.
PDF Accepted to CVPR 2022, New Orleans, Louisiana. For project page and code, see https://ivl.cs.brown.edu/ConDor/

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录