NeRF


2022-04-13 更新

NAN: Noise-Aware NeRFs for Burst-Denoising

Authors:Naama Pearl, Tali Treibitz, Simon Korman

Burst denoising is now more relevant than ever, as computational photography helps overcome sensitivity issues inherent in mobile phones and small cameras. A major challenge in burst-denoising is in coping with pixel misalignment, which was so far handled with rather simplistic assumptions of simple motion, or the ability to align in pre-processing. Such assumptions are not realistic in the presence of large motion and high levels of noise. We show that Neural Radiance Fields (NeRFs), originally suggested for physics-based novel-view rendering, can serve as a powerful framework for burst denoising. NeRFs have an inherent capability of handling noise as they integrate information from multiple images, but they are limited in doing so, mainly since they build on pixel-wise operations which are suitable to ideal imaging conditions. Our approach, termed NAN, leverages inter-view and spatial information in NeRFs to better deal with noise. It achieves state-of-the-art results in burst denoising and is especially successful in coping with large movement and occlusions, under very high levels of noise. With the rapid advances in accelerating NeRFs, it could provide a powerful platform for denoising in challenging environments.
PDF to appear at CVPR 2022

论文截图

GARF: Gaussian Activated Radiance Fields for High Fidelity Reconstruction and Pose Estimation

Authors:Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, Simon Lucey

Despite Neural Radiance Fields (NeRF) showing compelling results in photorealistic novel views synthesis of real-world scenes, most existing approaches require accurate prior camera poses. Although approaches for jointly recovering the radiance field and camera pose exist (BARF), they rely on a cumbersome coarse-to-fine auxiliary positional embedding to ensure good performance. We present Gaussian Activated neural Radiance Fields (GARF), a new positional embedding-free neural radiance field architecture - employing Gaussian activations - that outperforms the current state-of-the-art in terms of high fidelity reconstruction and pose estimation.
PDF Project page: https://sfchng.github.io/garf/

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录