I2I Translation


2022-03-31 更新

ITTR: Unpaired Image-to-Image Translation with Transformers

Authors:Wanfeng Zheng, Qiang Li, Guoxin Zhang, Pengfei Wan, Zhongyuan Wang

Unpaired image-to-image translation is to translate an image from a source domain to a target domain without paired training data. By utilizing CNN in extracting local semantics, various techniques have been developed to improve the translation performance. However, CNN-based generators lack the ability to capture long-range dependency to well exploit global semantics. Recently, Vision Transformers have been widely investigated for recognition tasks. Though appealing, it is inappropriate to simply transfer a recognition-based vision transformer to image-to-image translation due to the generation difficulty and the computation limitation. In this paper, we propose an effective and efficient architecture for unpaired Image-to-Image Translation with Transformers (ITTR). It has two main designs: 1) hybrid perception block (HPB) for token mixing from different receptive fields to utilize global semantics; 2) dual pruned self-attention (DPSA) to sharply reduce the computational complexity. Our ITTR outperforms the state-of-the-arts for unpaired image-to-image translation on six benchmark datasets.
PDF 18 pages, 7 figures, 5 tables

论文截图

Well-classified Examples are Underestimated in Classification with Deep Neural Networks

Authors:Guangxiang Zhao, Wenkai Yang, Xuancheng Ren, Lei Li, Yunfang Wu, Xu Sun

The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at: https://github.com/lancopku/well-classified-examples-are-underestimated.
PDF Accepted by AAAI 2022; 17 pages, 11 figures, 13 tables

论文截图

Translating Images into Maps

Authors:Avishkar Saha, Oscar Mendez Maldonado, Chris Russell, Richard Bowden

We approach instantaneous mapping, converting images to a top-down view of the world, as a translation problem. We show how a novel form of transformer network can be used to map from images and video directly to an overhead map or bird’s-eye-view (BEV) of the world, in a single end-to-end network. We assume a 1-1 correspondence between a vertical scanline in the image, and rays passing through the camera location in an overhead map. This lets us formulate map generation from an image as a set of sequence-to-sequence translations. Posing the problem as translation allows the network to use the context of the image when interpreting the role of each pixel. This constrained formulation, based upon a strong physical grounding of the problem, leads to a restricted transformer network that is convolutional in the horizontal direction only. The structure allows us to make efficient use of data when training, and obtains state-of-the-art results for instantaneous mapping of three large-scale datasets, including a 15% and 30% relative gain against existing best performing methods on the nuScenes and Argoverse datasets, respectively. We make our code available on https://github.com/avishkarsaha/translating-images-into-maps.
PDF Accepted to ICRA 2022

论文截图

Sketch-based Facial Synthesis: A New Challenge

Authors:Deng-Ping Fan, Ziling Huang, Peng Zheng, Hong Liu, Xuebin Qin, Luc Van Gool

This paper aims to conduct a comprehensive study on the facial sketch synthesis (FSS) problem. However, due to the high costs in obtaining hand-drawn sketch datasets, there lacks a complete benchmark for assessing the development of FSS algorithms over the last decade. As such, we first introduce a high-quality dataset for FSS, named FS2K, which consists of 2,104 image-sketch pairs spanning three types of sketch styles, image backgrounds, lighting conditions, skin colors, and facial attributes. FS2K differs from previous FSS datasets in difficulty, diversity, and scalability and should thus facilitate the progress of FSS research. Second, we present the largest-scale FSS study by reviewing 139 classical methods, including 24 handcrafted feature-based facial sketch synthesis approaches, 37 general neural-style transfer methods, 43 deep image-to-image translation methods, and 35 image-to-sketch approaches. Besides, we elaborate comprehensive experiments on the existing 19 cutting-edge models. Third, we present a simple baseline for FSS, named FSGAN. With only two straightforward components, i.e., facial-aware masking and style-vector expansion, FSGAN surpasses the performance of all previous state-of-the-art models on the proposed FS2K dataset by a large margin. Finally, we conclude with lessons learned over the past years and point out several unsolved challenges. Our open-source code is available at https://github.com/DengPingFan/FSGAN.
PDF Correct three citations in reference table, and some improvement on format

论文截图

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

Authors:Xiaohan Ding, Chunlong Xia, Xiangyu Zhang, Xiaojie Chu, Jungong Han, Guiguang Ding

We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition, which is composed of a series of fully-connected (FC) layers. Compared to convolutional layers, FC layers are more efficient, better at modeling the long-range dependencies and positional patterns, but worse at capturing the local structures, hence usually less favored for image recognition. We propose a structural re-parameterization technique that adds local prior into an FC to make it powerful for image recognition. Specifically, we construct convolutional layers inside a RepMLP during training and merge them into the FC for inference. On CIFAR, a simple pure-MLP model shows performance very close to CNN. By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs. Our intriguing findings highlight that combining the global representational capacity and positional perception of FC with the local prior of convolution can improve the performance of neural network with faster speed on both the tasks with translation invariance (e.g., semantic segmentation) and those with aligned images and positional patterns (e.g., face recognition). The code and models are available at https://github.com/DingXiaoH/RepMLP.
PDF This was a work in progress. Latest version is arXiv:2112.11081 (accepted by CVPR 2022)

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录