2022-03-30 更新
Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation
Authors:Xiao Fu, Shangzhan Zhang, Tianrun Chen, Yichong Lu, Lanyun Zhu, Xiaowei Zhou, Andreas Geiger, Yiyi Liao
Large-scale training data with high-quality annotations is critical for training semantic and instance segmentation models. Unfortunately, pixel-wise annotation is labor-intensive and costly, raising the demand for more efficient labeling strategies. In this work, we present a novel 3D-to-2D label transfer method, Panoptic NeRF, which aims for obtaining per-pixel 2D semantic and instance labels from easy-to-obtain coarse 3D bounding primitives. Our method utilizes NeRF as a differentiable tool to unify coarse 3D annotations and 2D semantic cues transferred from existing datasets. We demonstrate that this combination allows for improved geometry guided by semantic information, enabling rendering of accurate semantic maps across multiple views. Furthermore, this fusion process resolves label ambiguity of the coarse 3D annotations and filters noise in the 2D predictions. By inferring in 3D space and rendering to 2D labels, our 2D semantic and instance labels are multi-view consistent by design. Experimental results show that Panoptic NeRF outperforms existing semantic and instance label transfer methods in terms of accuracy and multi-view consistency on challenging urban scenes of the KITTI-360 dataset.
PDF Project page: https://fuxiao0719.github.io/projects/panopticnerf/
论文截图
Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs
Authors:Haithem Turki, Deva Ramanan, Mahadev Satyanarayanan
We use neural radiance fields (NeRFs) to build interactive 3D environments from large-scale visual captures spanning buildings or even multiple city blocks collected primarily from drones. In contrast to single object scenes (on which NeRFs are traditionally evaluated), our scale poses multiple challenges including (1) the need to model thousands of images with varying lighting conditions, each of which capture only a small subset of the scene, (2) prohibitively large model capacities that make it infeasible to train on a single GPU, and (3) significant challenges for fast rendering that would enable interactive fly-throughs. To address these challenges, we begin by analyzing visibility statistics for large-scale scenes, motivating a sparse network structure where parameters are specialized to different regions of the scene. We introduce a simple geometric clustering algorithm for data parallelism that partitions training images (or rather pixels) into different NeRF submodules that can be trained in parallel. We evaluate our approach on existing datasets (Quad 6k and UrbanScene3D) as well as against our own drone footage, improving training speed by 3x and PSNR by 12%. We also evaluate recent NeRF fast renderers on top of Mega-NeRF and introduce a novel method that exploits temporal coherence. Our technique achieves a 40x speedup over conventional NeRF rendering while remaining within 0.8 db in PSNR quality, exceeding the fidelity of existing fast renderers.
PDF CVPR 2022 Project page: https://meganerf.cmusatyalab.org GitHub: https://github.com/cmusatyalab/mega-nerf