I2I Translation


2022-03-30 更新

A Style-aware Discriminator for Controllable Image Translation

Authors:Kunhee Kim, Sanghun Park, Eunyeong Jeon, Taehun Kim, Daijin Kim

Current image-to-image translations do not control the output domain beyond the classes used during training, nor do they interpolate between different domains well, leading to implausible results. This limitation largely arises because labels do not consider the semantic distance. To mitigate such problems, we propose a style-aware discriminator that acts as a critic as well as a style encoder to provide conditions. The style-aware discriminator learns a controllable style space using prototype-based self-supervised learning and simultaneously guides the generator. Experiments on multiple datasets verify that the proposed model outperforms current state-of-the-art image-to-image translation methods. In contrast with current methods, the proposed approach supports various applications, including style interpolation, content transplantation, and local image translation.
PDF 2022 CVPR

论文截图

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Authors:Kai Zhang, Yawei Li, Jingyun Liang, Jiezhang Cao, Yulun Zhang, Hao Tang, Radu Timofte, Luc Van Gool

While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising, existing methods mostly rely on simple noise assumptions, such as additive white Gaussian noise (AWGN), JPEG compression noise and camera sensor noise, and a general-purpose blind denoising method for real images remains unsolved. In this paper, we attempt to solve this problem from the perspective of network architecture design and training data synthesis. Specifically, for the network architecture design, we propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block, and then plug it as the main building block into the widely-used image-to-image translation UNet architecture. For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise (including Gaussian, Poisson, speckle, JPEG compression, and processed camera sensor noises) and resizing, and also involves a random shuffle strategy and a double degradation strategy. Extensive experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance and the new degradation model can help to significantly improve the practicability. We believe our work can provide useful insights into current denoising research.
PDF Codes: https://github.com/cszn/SCUNet

论文截图

Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image Translation

Authors:Yanwu Xu, Shaoan Xie, Wenhao Wu, Kun Zhang, Mingming Gong, Kayhan Batmanghelich

Unpaired image-to-image translation (I2I) is an ill-posed problem, as an infinite number of translation functions can map the source domain distribution to the target distribution. Therefore, much effort has been put into designing suitable constraints, e.g., cycle consistency (CycleGAN), geometry consistency (GCGAN), and contrastive learning-based constraints (CUTGAN), that help better pose the problem. However, these well-known constraints have limitations: (1) they are either too restrictive or too weak for specific I2I tasks; (2) these methods result in content distortion when there is a significant spatial variation between the source and target domains. This paper proposes a universal regularization technique called maximum spatial perturbation consistency (MSPC), which enforces a spatial perturbation function (T ) and the translation operator (G) to be commutative (i.e., TG = GT ). In addition, we introduce two adversarial training components for learning the spatial perturbation function. The first one lets T compete with G to achieve maximum perturbation. The second one lets G and T compete with discriminators to align the spatial variations caused by the change of object size, object distortion, background interruptions, etc. Our method outperforms the state-of-the-art methods on most I2I benchmarks. We also introduce a new benchmark, namely the front face to profile face dataset, to emphasize the underlying challenges of I2I for real-world applications. We finally perform ablation experiments to study the sensitivity of our method to the severity of spatial perturbation and its effectiveness for distribution alignment.
PDF CVPR 2022 accepted paper

论文截图

Semi-Supervised Image-to-Image Translation using Latent Space Mapping

Authors:Pan Zhang, Jianmin Bao, Ting Zhang, Dong Chen, Fang Wen

Recent image-to-image translation works have been transferred from supervised to unsupervised settings due to the expensive cost of capturing or labeling large amounts of paired data. However, current unsupervised methods using the cycle-consistency constraint may not find the desired mapping, especially for difficult translation tasks. On the other hand, a small number of paired data are usually accessible. We therefore introduce a general framework for semi-supervised image translation. Unlike previous works, our main idea is to learn the translation over the latent feature space instead of the image space. Thanks to the low dimensional feature space, it is easier to find the desired mapping function, resulting in improved quality of translation results as well as the stability of the translation model. Empirically we show that using feature translation generates better results, even using a few bits of paired data. Experimental comparisons with state-of-the-art approaches demonstrate the effectiveness of the proposed framework on a variety of challenging image-to-image translation tasks
PDF

论文截图

Learning to generate line drawings that convey geometry and semantics

Authors:Caroline Chan, Fredo Durand, Phillip Isola

This paper presents an unpaired method for creating line drawings from photographs. Current methods often rely on high quality paired datasets to generate line drawings. However, these datasets often have limitations due to the subjects of the drawings belonging to a specific domain, or in the amount of data collected. Although recent work in unsupervised image-to-image translation has shown much progress, the latest methods still struggle to generate compelling line drawings. We observe that line drawings are encodings of scene information and seek to convey 3D shape and semantic meaning. We build these observations into a set of objectives and train an image translation to map photographs into line drawings. We introduce a geometry loss which predicts depth information from the image features of a line drawing, and a semantic loss which matches the CLIP features of a line drawing with its corresponding photograph. Our approach outperforms state-of-the-art unpaired image translation and line drawing generation methods on creating line drawings from arbitrary photographs. For code and demo visit our webpage carolineec.github.io/informative_drawings
PDF Corrected and added references

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录