检测/分割/跟踪


2022-03-29 更新

Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing Images

Authors:Gongyang Li, Zhi Liu, Dan Zeng, Weisi Lin, Haibin Ling

Salient object detection (SOD) in optical remote sensing images (RSIs), or RSI-SOD, is an emerging topic in understanding optical RSIs. However, due to the difference between optical RSIs and natural scene images (NSIs), directly applying NSI-SOD methods to optical RSIs fails to achieve satisfactory results. In this paper, we propose a novel Adjacent Context Coordination Network (ACCoNet) to explore the coordination of adjacent features in an encoder-decoder architecture for RSI-SOD. Specifically, ACCoNet consists of three parts: an encoder, Adjacent Context Coordination Modules (ACCoMs), and a decoder. As the key component of ACCoNet, ACCoM activates the salient regions of output features of the encoder and transmits them to the decoder. ACCoM contains a local branch and two adjacent branches to coordinate the multi-level features simultaneously. The local branch highlights the salient regions in an adaptive way, while the adjacent branches introduce global information of adjacent levels to enhance salient regions. Additionally, to extend the capabilities of the classic decoder block (i.e., several cascaded convolutional layers), we extend it with two bifurcations and propose a Bifurcation-Aggregation Block to capture the contextual information in the decoder. Extensive experiments on two benchmark datasets demonstrate that the proposed ACCoNet outperforms 22 state-of-the-art methods under nine evaluation metrics, and runs up to 81 fps on a single NVIDIA Titan X GPU. The code and results of our method are available at https://github.com/MathLee/ACCoNet.
PDF 13 pages, 7 figures, Accepted by IEEE Transactions on Cybernetics 2022

论文截图

Rope3D: TheRoadside Perception Dataset for Autonomous Driving and Monocular 3D Object Detection Task

Authors:Xiaoqing Ye, Mao Shu, Hanyu Li, Yifeng Shi, Yingying Li, Guangjie Wang, Xiao Tan, Errui Ding

Concurrent perception datasets for autonomous driving are mainly limited to frontal view with sensors mounted on the vehicle. None of them is designed for the overlooked roadside perception tasks. On the other hand, the data captured from roadside cameras have strengths over frontal-view data, which is believed to facilitate a safer and more intelligent autonomous driving system. To accelerate the progress of roadside perception, we present the first high-diversity challenging Roadside Perception 3D dataset- Rope3D from a novel view. The dataset consists of 50k images and over 1.5M 3D objects in various scenes, which are captured under different settings including various cameras with ambiguous mounting positions, camera specifications, viewpoints, and different environmental conditions. We conduct strict 2D-3D joint annotation and comprehensive data analysis, as well as set up a new 3D roadside perception benchmark with metrics and evaluation devkit. Furthermore, we tailor the existing frontal-view monocular 3D object detection approaches and propose to leverage the geometry constraint to solve the inherent ambiguities caused by various sensors, viewpoints. Our dataset is available on https://thudair.baai.ac.cn/rope.
PDF To appear in CVPR2022

论文截图

ConsNet: Learning Consistency Graph for Zero-Shot Human-Object Interaction Detection

Authors:Ye Liu, Junsong Yuan, Chang Wen Chen

We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of in images. Most existing works treat HOIs as individual interaction categories, thus can not handle the problem of long-tail distribution and polysemy of action labels. We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs. Leveraging the compositional and relational peculiarities of HOI labels, we propose ConsNet, a knowledge-aware framework that explicitly encodes the relations among objects, actions and interactions into an undirected graph called consistency graph, and exploits Graph Attention Networks (GATs) to propagate knowledge among HOI categories as well as their constituents. Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities. We extensively evaluate our model on the challenging V-COCO and HICO-DET datasets, and results validate that our approach outperforms state-of-the-arts under both fully-supervised and zero-shot settings. Code is available at https://github.com/yeliudev/ConsNet.
PDF Accepted to Proceedings of the 28th ACM International Conference on Multimedia (MM 2020)

论文截图

Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

Authors:Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasileios Belagiannis, Gustavo Carneiro

Consistency learning using input image, feature, or network perturbations has shown remarkable results in semi-supervised semantic segmentation, but this approach can be seriously affected by inaccurate predictions of unlabelled training images. There are two consequences of these inaccurate predictions: 1) the training based on the “strict” cross-entropy (CE) loss can easily overfit prediction mistakes, leading to confirmation bias; and 2) the perturbations applied to these inaccurate predictions will use potentially erroneous predictions as training signals, degrading consistency learning. In this paper, we address the prediction accuracy problem of consistency learning methods with novel extensions of the mean-teacher (MT) model, which include a new auxiliary teacher, and the replacement of MT’s mean square error (MSE) by a stricter confidence-weighted cross-entropy (Conf-CE) loss. The accurate prediction by this model allows us to use a challenging combination of network, input data and feature perturbations to improve the consistency learning generalisation, where the feature perturbations consist of a new adversarial perturbation. Results on public benchmarks show that our approach achieves remarkable improvements over the previous SOTA methods in the field. Our code is available at https://github.com/yyliu01/PS-MT.
PDF CVPR 2022 camera-ready

论文截图

MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection

Authors:Renrui Zhang, Han Qiu, Tai Wang, Xuanzhuo Xu, Ziyu Guo, Yu Qiao, Peng Gao, Hongsheng Li

Monocular 3D object detection has long been a challenging task in autonomous driving, which requires to decode 3D predictions solely from a single 2D image. Most existing methods follow conventional 2D object detectors to first localize objects by their centers, and then predict 3D attributes using center-neighboring local features. However, such center-based pipeline views 3D prediction as a subordinate task and lacks inter-object depth interactions with global spatial clues. In this paper, we introduce a simple framework for Monocular DEtection with depth-aware TRansformer, named MonoDETR. We enable the vanilla transformer to be depth-aware and enforce the whole detection process guided by depth. Specifically, we represent 3D object candidates as a set of queries and produce non-local depth embeddings of the input image by a lightweight depth predictor and an attention-based depth encoder. Then, we propose a depth-aware decoder to conduct both inter-query and query-scene depth feature communication. In this way, each object estimates its 3D attributes adaptively from the depth-informative regions on the image, not limited by center-around features. With minimal handcrafted designs, MonoDETR is an end-to-end framework without additional data, anchors or NMS and achieves competitive performance on KITTI benchmark among state-of-the-art center-based networks. Extensive ablation studies demonstrate the effectiveness of our approach and its potential to serve as a transformer baseline for future monocular research. Code is available at https://github.com/ZrrSkywalker/MonoDETR.git.
PDF 10 pages, 5 figures

论文截图

Cross Language Image Matching for Weakly Supervised Semantic Segmentation

Authors:Jinheng Xie, Xianxu Hou, Kai Ye, Linlin Shen

It has been widely known that CAM (Class Activation Map) usually only activates discriminative object regions and falsely includes lots of object-related backgrounds. As only a fixed set of image-level object labels are available to the WSSS (weakly supervised semantic segmentation) model, it could be very difficult to suppress those diverse background regions consisting of open set objects. In this paper, we propose a novel Cross Language Image Matching (CLIMS) framework, based on the recently introduced Contrastive Language-Image Pre-training (CLIP) model, for WSSS. The core idea of our framework is to introduce natural language supervision to activate more complete object regions and suppress closely-related open background regions. In particular, we design object, background region and text label matching losses to guide the model to excite more reasonable object regions for CAM of each category. In addition, we design a co-occurring background suppression loss to prevent the model from activating closely-related background regions, with a predefined set of class-related background text descriptions. These designs enable the proposed CLIMS to generate a more complete and compact activation map for the target objects. Extensive experiments on PASCAL VOC2012 dataset show that our CLIMS significantly outperforms the previous state-of-the-art methods.
PDF Accepted by CVPR 2022

论文截图

Uncertainty-aware Contrastive Distillation for Incremental Semantic Segmentation

Authors:Guanglei Yang, Enrico Fini, Dan Xu, Paolo Rota, Mingli Ding, Moin Nabi, Xavier Alameda-Pineda, Elisa Ricci

A fundamental and challenging problem in deep learning is catastrophic forgetting, i.e. the tendency of neural networks to fail to preserve the knowledge acquired from old tasks when learning new tasks. This problem has been widely investigated in the research community and several Incremental Learning (IL) approaches have been proposed in the past years. While earlier works in computer vision have mostly focused on image classification and object detection, more recently some IL approaches for semantic segmentation have been introduced. These previous works showed that, despite its simplicity, knowledge distillation can be effectively employed to alleviate catastrophic forgetting. In this paper, we follow this research direction and, inspired by recent literature on contrastive learning, we propose a novel distillation framework, Uncertainty-aware Contrastive Distillation (\method). In a nutshell, \method~is operated by introducing a novel distillation loss that takes into account all the images in a mini-batch, enforcing similarity between features associated to all the pixels from the same classes, and pulling apart those corresponding to pixels from different classes. In order to mitigate catastrophic forgetting, we contrast features of the new model with features extracted by a frozen model learned at the previous incremental step. Our experimental results demonstrate the advantage of the proposed distillation technique, which can be used in synergy with previous IL approaches, and leads to state-of-art performance on three commonly adopted benchmarks for incremental semantic segmentation. The code is available at \url{https://github.com/ygjwd12345/UCD}.
PDF TPAMI

论文截图

SIGMA: Semantic-complete Graph Matching for Domain Adaptive Object Detection

Authors:Wuyang Li, Xinyu Liu, Yixuan Yuan

Domain Adaptive Object Detection (DAOD) leverages a labeled domain to learn an object detector generalizing to a novel domain free of annotations. Recent advances align class-conditional distributions by narrowing down cross-domain prototypes (class centers). Though great success,they ignore the significant within-class variance and the domain-mismatched semantics within the training batch, leading to a sub-optimal adaptation. To overcome these challenges, we propose a novel SemantIc-complete Graph MAtching (SIGMA) framework for DAOD, which completes mismatched semantics and reformulates the adaptation with graph matching. Specifically, we design a Graph-embedded Semantic Completion module (GSC) that completes mismatched semantics through generating hallucination graph nodes in missing categories. Then, we establish cross-image graphs to model class-conditional distributions and learn a graph-guided memory bank for better semantic completion in turn. After representing the source and target data as graphs, we reformulate the adaptation as a graph matching problem, i.e., finding well-matched node pairs across graphs to reduce the domain gap, which is solved with a novel Bipartite Graph Matching adaptor (BGM). In a nutshell, we utilize graph nodes to establish semantic-aware node affinity and leverage graph edges as quadratic constraints in a structure-aware matching loss, achieving fine-grained adaptation with a node-to-node graph matching. Extensive experiments verify that SIGMA outperforms existing works significantly. Our code is available at https://github.com/CityU-AIM-Group/SIGMA.
PDF Accepted by CVPR2022

论文截图

Does Monocular Depth Estimation Provide Better Pre-training than Classification for Semantic Segmentation?

Authors:Dong Lao, Alex Wong, Stefano Soatto

Training a deep neural network for semantic segmentation is labor-intensive, so it is common to pre-train it for a different task, and then fine-tune it with a small annotated dataset. State-of-the-art methods use image classification for pre-training, which introduces uncontrolled biases. We test the hypothesis that depth estimation from unlabeled videos may provide better pre-training. Despite the absence of any semantic information, we argue that estimating scene geometry is closer to the task of semantic segmentation than classifying whole images into semantic classes. Since analytical validation is intractable, we test the hypothesis empirically by introducing a pre-training scheme that yields an improvement of 5.7% mIoU and 4.1% pixel accuracy over classification-based pre-training. While annotation is not needed for pre-training, it is needed for testing the hypothesis. We use the KITTI (outdoor) and NYU-V2 (indoor) benchmarks to that end, and provide an extensive discussion of the benefits and limitations of the proposed scheme in relation to existing unsupervised, self-supervised, and semi-supervised pre-training protocols.
PDF

论文截图

Sequential Voting with Relational Box Fields for Active Object Detection

Authors:Qichen Fu, Xingyu Liu, Kris M. Kitani

A key component of understanding hand-object interactions is the ability to identify the active object — the object that is being manipulated by the human hand. In order to accurately localize the active object, any method must reason using information encoded by each image pixel, such as whether it belongs to the hand, the object, or the background. To leverage each pixel as evidence to determine the bounding box of the active object, we propose a pixel-wise voting function. Our pixel-wise voting function takes an initial bounding box as input and produces an improved bounding box of the active object as output. The voting function is designed so that each pixel inside of the input bounding box votes for an improved bounding box, and the box with the majority vote is selected as the output. We call the collection of bounding boxes generated inside of the voting function, the Relational Box Field, as it characterizes a field of bounding boxes defined in relationship to the current bounding box. While our voting function is able to improve the bounding box of the active object, one round of voting is typically not enough to accurately localize the active object. Therefore, we repeatedly apply the voting function to sequentially improve the location of the bounding box. However, since it is known that repeatedly applying a one-step predictor (i.e., auto-regressive processing with our voting function) can cause a data distribution shift, we mitigate this issue using reinforcement learning (RL). We adopt standard RL to learn the voting function parameters and show that it provides a meaningful improvement over a standard supervised learning approach. We perform experiments on two large-scale datasets: 100DOH and MECCANO, improving AP50 performance by 8% and 30%, respectively, over the state of the art.
PDF In CVPR 2022. Project: https://fuqichen1998.github.io/SequentialVotingDet/

论文截图

SGDR: Semantic-guided Disentangled Representation for Unsupervised Cross-modality Medical Image Segmentation

Authors:Shuai Wang, Li Rui

Disentangled representation is a powerful technique to tackle domain shift problem in medical image analysis in unsupervised domain adaptation setting.However, previous methods only focus on exacting domain-invariant feature and ignore whether exacted feature is meaningful for downstream tasks.We propose a novel framework, called semantic-guided disentangled representation (SGDR), an effective method to exact semantically meaningful feature for segmentation task to improve performance of cross modality medical image segmentation in unsupervised domain adaptation setting.To exact the meaningful domain-invariant features of different modality, we introduce a content discriminator to force the content representation to be embedded to the same space and a feature discriminator to exact the meaningful representation.We also use pixel-level annotations to guide the encoder to learn features that are meaningful for segmentation task.We validated our method on two public datasets and experiment results show that our approach outperforms the state of the art methods on two evaluation metrics by a significant margin.
PDF Tech Report

论文截图

BCOT: A Markerless High-Precision 3D Object Tracking Benchmark

Authors:Jiachen Li, Bin Wang, Shiqiang Zhu, Xin Cao, Fan Zhong, Wenxuan Chen, Te Li, Jason Gu, Xueying Qin

Template-based 3D object tracking still lacks a high-precision benchmark of real scenes due to the difficulty of annotating the accurate 3D poses of real moving video objects without using markers. In this paper, we present a multi-view approach to estimate the accurate 3D poses of real moving objects, and then use binocular data to construct a new benchmark for monocular textureless 3D object tracking. The proposed method requires no markers, and the cameras only need to be synchronous, relatively fixed as cross-view and calibrated. Based on our object-centered model, we jointly optimize the object pose by minimizing shape re-projection constraints in all views, which greatly improves the accuracy compared with the single-view approach, and is even more accurate than the depth-based method. Our new benchmark dataset contains 20 textureless objects, 22 scenes, 404 video sequences and 126K images captured in real scenes. The annotation error is guaranteed to be less than 2mm, according to both theoretical analysis and validation experiments. We re-evaluate the state-of-the-art 3D object tracking methods with our dataset, reporting their performance ranking in real scenes. Our BCOT benchmark and code can be found at https://ar3dv.github.io/BCOT-Benchmark/.
PDF

论文截图

MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer

Authors:Kuan-Chih Huang, Tsung-Han Wu, Hung-Ting Su, Winston H. Hsu

Monocular 3D object detection is an important yet challenging task in autonomous driving. Some existing methods leverage depth information from an off-the-shelf depth estimator to assist 3D detection, but suffer from the additional computational burden and achieve limited performance caused by inaccurate depth priors. To alleviate this, we propose MonoDTR, a novel end-to-end depth-aware transformer network for monocular 3D object detection. It mainly consists of two components: (1) the Depth-Aware Feature Enhancement (DFE) module that implicitly learns depth-aware features with auxiliary supervision without requiring extra computation, and (2) the Depth-Aware Transformer (DTR) module that globally integrates context- and depth-aware features. Moreover, different from conventional pixel-wise positional encodings, we introduce a novel depth positional encoding (DPE) to inject depth positional hints into transformers. Our proposed depth-aware modules can be easily plugged into existing image-only monocular 3D object detectors to improve the performance. Extensive experiments on the KITTI dataset demonstrate that our approach outperforms previous state-of-the-art monocular-based methods and achieves real-time detection. Code is available at https://github.com/kuanchihhuang/MonoDTR
PDF Accepted to CVPR 2022

论文截图

Semantic Segmentation by Early Region Proxy

Authors:Yifan Zhang, Bo Pang, Cewu Lu

Typical vision backbones manipulate structured features. As a compromise, semantic segmentation has long been modeled as per-point prediction on dense regular grids. In this work, we present a novel and efficient modeling that starts from interpreting the image as a tessellation of learnable regions, each of which has flexible geometrics and carries homogeneous semantics. To model region-wise context, we exploit Transformer to encode regions in a sequence-to-sequence manner by applying multi-layer self-attention on the region embeddings, which serve as proxies of specific regions. Semantic segmentation is now carried out as per-region prediction on top of the encoded region embeddings using a single linear classifier, where a decoder is no longer needed. The proposed RegProxy model discards the common Cartesian feature layout and operates purely at region level. Hence, it exhibits the most competitive performance-efficiency trade-off compared with the conventional dense prediction methods. For example, on ADE20K, the small-sized RegProxy-S/16 outperforms the best CNN model using 25% parameters and 4% computation, while the largest RegProxy-L/16 achieves 52.9mIoU which outperforms the state-of-the-art by 2.1% with fewer resources. Codes and models are available at https://github.com/YiF-Zhang/RegionProxy.
PDF CVPR 2022

论文截图

Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation

Authors:Binhui Xie, Longhui Yuan, Shuang Li, Chi Harold Liu, Xinjing Cheng

Self-training has greatly facilitated domain adaptive semantic segmentation, which iteratively generates pseudo labels on unlabeled target data and retrains the network. However, realistic segmentation datasets are highly imbalanced, pseudo labels are typically biased to the majority classes and basically noisy, leading to an error-prone and suboptimal model. In this paper, we propose a simple region-based active learning approach for semantic segmentation under a domain shift, aiming to automatically query a small partition of image regions to be labeled while maximizing segmentation performance. Our algorithm, Region Impurity and Prediction Uncertainty (RIPU), introduces a new acquisition strategy characterizing the spatial adjacency of image regions along with the prediction confidence. We show that the proposed region-based selection strategy makes more efficient use of a limited budget than image-based or point-based counterparts. Further, we enforce local prediction consistency between a pixel and its nearest neighbors on a source image. Alongside, we develop a negative learning loss to make the features more discriminative. Extensive experiments demonstrate that our method only requires very few annotations to almost reach the supervised performance and substantially outperforms state-of-the-art methods. The code is available at https://github.com/BIT-DA/RIPU.
PDF CVPR 2022 camera-ready version. The code is available at https://github.com/BIT-DA/RIPU

论文截图

Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model

Authors:Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao, Guoqi Li

Recently, vision-language pre-training shows great potential in open-vocabulary object detection, where detectors trained on base classes are devised for detecting new classes. The class text embedding is firstly generated by feeding prompts to the text encoder of a pre-trained vision-language model. It is then used as the region classifier to supervise the training of a detector. The key element that leads to the success of this model is the proper prompt, which requires careful words tuning and ingenious design. To avoid laborious prompt engineering, there are some prompt representation learning methods being proposed for the image classification task, which however can only be sub-optimal solutions when applied to the detection task. In this paper, we introduce a novel method, detection prompt (DetPro), to learn continuous prompt representations for open-vocabulary object detection based on the pre-trained vision-language model. Different from the previous classification-oriented methods, DetPro has two highlights: 1) a background interpretation scheme to include the proposals in image background into the prompt training; 2) a context grading scheme to separate proposals in image foreground for tailored prompt training. We assemble DetPro with ViLD, a recent state-of-the-art open-world object detector, and conduct experiments on the LVIS as well as transfer learning on the Pascal VOC, COCO, Objects365 datasets. Experimental results show that our DetPro outperforms the baseline ViLD in all settings, e.g., +3.4 APbox and +3.0 APmask improvements on the novel classes of LVIS. Code and models are available at https://github.com/dyabel/detpro.
PDF Accepted by CVPR 2022

论文截图

Unbiased Subclass Regularization for Semi-Supervised Semantic Segmentation

Authors:Dayan Guan, Jiaxing Huang, Aoran Xiao, Shijian Lu

Semi-supervised semantic segmentation learns from small amounts of labelled images and large amounts of unlabelled images, which has witnessed impressive progress with the recent advance of deep neural networks. However, it often suffers from severe class-bias problem while exploring the unlabelled images, largely due to the clear pixel-wise class imbalance in the labelled images. This paper presents an unbiased subclass regularization network (USRN) that alleviates the class imbalance issue by learning class-unbiased segmentation from balanced subclass distributions. We build the balanced subclass distributions by clustering pixels of each original class into multiple subclasses of similar sizes, which provide class-balanced pseudo supervision to regularize the class-biased segmentation. In addition, we design an entropy-based gate mechanism to coordinate learning between the original classes and the clustered subclasses which facilitates subclass regularization effectively by suppressing unconfident subclass predictions. Extensive experiments over multiple public benchmarks show that USRN achieves superior performance as compared with the state-of-the-art.
PDF Accepted to CVPR 2022. Code is available at https://github.com/Dayan-Guan/USRN

论文截图

MSTR: Multi-Scale Transformer for End-to-End Human-Object Interaction Detection

Authors:Bumsoo Kim, Jonghwan Mun, Kyoung-Woon On, Minchul Shin, Junhyun Lee, Eun-Sol Kim

Human-Object Interaction (HOI) detection is the task of identifying a set of triplets from an image. Recent work proposed transformer encoder-decoder architectures that successfully eliminated the need for many hand-designed components in HOI detection through end-to-end training. However, they are limited to single-scale feature resolution, providing suboptimal performance in scenes containing humans, objects and their interactions with vastly different scales and distances. To tackle this problem, we propose a Multi-Scale TRansformer (MSTR) for HOI detection powered by two novel HOI-aware deformable attention modules called Dual-Entity attention and Entity-conditioned Context attention. While existing deformable attention comes at a huge cost in HOI detection performance, our proposed attention modules of MSTR learn to effectively attend to sampling points that are essential to identify interactions. In experiments, we achieve the new state-of-the-art performance on two HOI detection benchmarks.
PDF CVPR 2022

论文截图

Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation

Authors:Jinheng Xie, Jianfeng Xiang, Junliang Chen, Xianxu Hou, Xiaodong Zhao, Linlin Shen

While class activation map (CAM) generated by image classification network has been widely used for weakly supervised object localization (WSOL) and semantic segmentation (WSSS), such classifiers usually focus on discriminative object regions. In this paper, we propose Contrastive learning for Class-agnostic Activation Map (C$^2$AM) generation only using unlabeled image data, without the involvement of image-level supervision. The core idea comes from the observation that i) semantic information of foreground objects usually differs from their backgrounds; ii) foreground objects with similar appearance or background with similar color/texture have similar representations in the feature space. We form the positive and negative pairs based on the above relations and force the network to disentangle foreground and background with a class-agnostic activation map using a novel contrastive loss. As the network is guided to discriminate cross-image foreground-background, the class-agnostic activation maps learned by our approach generate more complete object regions. We successfully extracted from C$^2$AM class-agnostic object bounding boxes for object localization and background cues to refine CAM generated by classification network for semantic segmentation. Extensive experiments on CUB-200-2011, ImageNet-1K, and PASCAL VOC2012 datasets show that both WSOL and WSSS can benefit from the proposed C$^2$AM.
PDF Accepted by CVPR 2022

论文截图

Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images

Authors:Ye Liu, Huifang Li, Chao Hu, Shuang Luo, Yan Luo, Chang Wen Chen

The task of instance segmentation in remote sensing images, aiming at performing per-pixel labeling of objects at instance level, is of great importance for various civil applications. Despite previous successes, most existing instance segmentation methods designed for natural images encounter sharp performance degradations when they are directly applied to top-view remote sensing images. Through careful analysis, we observe that the challenges mainly come from the lack of discriminative object features due to severe scale variations, low contrasts, and clustered distributions. In order to address these problems, a novel context aggregation network (CATNet) is proposed to improve the feature extraction process. The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid (SCP), and hierarchical region of interest extractor (HRoIE), to aggregate global visual context at feature, spatial, and instance domains, respectively. DenseFPN is a multi-scale feature propagation module that establishes more flexible information flows by adopting inter-level residual connections, cross-level dense connections, and feature re-weighting strategy. Leveraging the attention mechanism, SCP further augments the features by aggregating global spatial context into local regions. For each instance, HRoIE adaptively generates RoI features for different downstream tasks. We carry out extensive evaluations of the proposed scheme on the challenging iSAID, DIOR, NWPU VHR-10, and HRSID datasets. The evaluation results demonstrate that the proposed approach outperforms state-of-the-arts under similar computational costs. Source code and pre-trained models are available at https://github.com/yeliudev/CATNet.
PDF

论文截图

StructToken : Rethinking Semantic Segmentation with Structural Prior

Authors:Fangjian Lin, Zhanhao Liang, Junjun He, Miao Zheng, Shengwei Tian, Kai Chen

In this paper, we present structure token (StructToken), a new paradigm for semantic segmentation. From a perspective on semantic segmentation as per-pixel classification, the previous deep learning-based methods learn the per-pixel representation first through an encoder and a decoder head and then classify each pixel representation to a specific category to obtain the semantic masks. Differently, we propose a structure-aware algorithm that takes structural information as prior to predict semantic masks directly without per-pixel classification. Specifically, given an input image, the learnable structure token interacts with the image representations to reason the final semantic masks. Three interaction approaches are explored and the results not only outperform the state-of-the-art methods but also contain more structural information. Experiments are conducted on three widely used datasets including ADE20k, Cityscapes, and COCO-Stuff 10K. We hope that structure token could serve as an alternative for semantic segmentation and inspire future research.
PDF 22 pages, 10 figures

论文截图

Feature Selective Transformer for Semantic Image Segmentation

Authors:Fangjian Lin, Tianyi Wu, Sitong Wu, Shengwei Tian, Guodong Guo

Recently, it has attracted more and more attentions to fuse multi-scale features for semantic image segmentation. Various works were proposed to employ progressive local or global fusion, but the feature fusions are not rich enough for modeling multi-scale context features. In this work, we focus on fusing multi-scale features from Transformer-based backbones for semantic segmentation, and propose a Feature Selective Transformer (FeSeFormer), which aggregates features from all scales (or levels) for each query feature. Specifically, we first propose a Scale-level Feature Selection (SFS) module, which can choose an informative subset from the whole multi-scale feature set for each scale, where those features that are important for the current scale (or level) are selected and the redundant are discarded. Furthermore, we propose a Full-scale Feature Fusion (FFF) module, which can adaptively fuse features of all scales for queries. Based on the proposed SFS and FFF modules, we develop a Feature Selective Transformer (FeSeFormer), and evaluate our FeSeFormer on four challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K, COCO-Stuff 10K, and Cityscapes, outperforming the state-of-the-art.
PDF

论文截图

STURE: Spatial-Temporal Mutual Representation Learning for Robust Data Association in Online Multi-Object Tracking

Authors:Haidong Wang, Zhiyong Li, Yaping Li, Ke Nai, Ming Wen

Online multi-object tracking (MOT) is a longstanding task for computer vision and intelligent vehicle platform. At present, the main paradigm is tracking-by-detection, and the main difficulty of this paradigm is how to associate current candidate detections with historical tracklets. However, in the MOT scenarios, each historical tracklet is composed of an object sequence, while each candidate detection is just a flat image, which lacks temporal features of the object sequence. The feature difference between current candidate detections and historical tracklets makes the object association much harder. Therefore, we propose a Spatial-Temporal Mutual Representation Learning (STURE) approach which learns spatial-temporal representations between current candidate detections and historical sequences in a mutual representation space. For historical trackelets, the detection learning network is forced to match the representations of sequence learning network in a mutual representation space. The proposed approach is capable of extracting more distinguishing detection and sequence representations by using various designed losses in object association. As a result, spatial-temporal feature is learned mutually to reinforce the current detection features, and the feature difference can be relieved. To prove the robustness of the STURE, it is applied to the public MOT challenge benchmarks and performs well compared with various state-of-the-art online MOT trackers based on identity-preserving metrics.
PDF

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录