对抗攻击


2022-03-29 更新

Adversarial Bone Length Attack on Action Recognition

Authors:Nariki Tanaka, Hiroshi Kera, Kazuhiko Kawamoto

Skeleton-based action recognition models have recently been shown to be vulnerable to adversarial attacks. Compared to adversarial attacks on images, perturbations to skeletons are typically bounded to a lower dimension of approximately 100 per frame. This lower-dimensional setting makes it more difficult to generate imperceptible perturbations. Existing attacks resolve this by exploiting the temporal structure of the skeleton motion so that the perturbation dimension increases to thousands. In this paper, we show that adversarial attacks can be performed on skeleton-based action recognition models, even in a significantly low-dimensional setting without any temporal manipulation. Specifically, we restrict the perturbations to the lengths of the skeleton’s bones, which allows an adversary to manipulate only approximately 30 effective dimensions. We conducted experiments on the NTU RGB+D and HDM05 datasets and demonstrate that the proposed attack successfully deceived models with sometimes greater than 90% success rate by small perturbations. Furthermore, we discovered an interesting phenomenon: in our low-dimensional setting, the adversarial training with the bone length attack shares a similar property with data augmentation, and it not only improves the adversarial robustness but also improves the classification accuracy on the original data. This is an interesting counterexample of the trade-off between adversarial robustness and clean accuracy, which has been widely observed in studies on adversarial training in the high-dimensional regime.
PDF 12 pages, 8 figures, accepted to AAAI2022

论文截图

Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack

Authors:Ye Liu, Yaya Cheng, Lianli Gao, Xianglong Liu, Qilong Zhang, Jingkuan Song

Defense models against adversarial attacks have grown significantly, but the lack of practical evaluation methods has hindered progress. Evaluation can be defined as looking for defense models’ lower bound of robustness given a budget number of iterations and a test dataset. A practical evaluation method should be convenient (i.e., parameter-free), efficient (i.e., fewer iterations) and reliable (i.e., approaching the lower bound of robustness). Towards this target, we propose a parameter-free Adaptive Auto Attack (A$^3$) evaluation method which addresses the efficiency and reliability in a test-time-training fashion. Specifically, by observing that adversarial examples to a specific defense model follow some regularities in their starting points, we design an Adaptive Direction Initialization strategy to speed up the evaluation. Furthermore, to approach the lower bound of robustness under the budget number of iterations, we propose an online statistics-based discarding strategy that automatically identifies and abandons hard-to-attack images. Extensive experiments demonstrate the effectiveness of our A$^3$. Particularly, we apply A$^3$ to nearly 50 widely-used defense models. By consuming much fewer iterations than existing methods, i.e., $1/10$ on average (10$\times$ speed up), we achieve lower robust accuracy in all cases. Notably, we won $\textbf{first place}$ out of 1681 teams in CVPR 2021 White-box Adversarial Attacks on Defense Models competitions with this method. Code is available at: $\href{https://github.com/liuye6666/adaptive_auto_attack}{https://github.com/liuye6666/adaptive\_auto\_attack}$
PDF Accepted by CVPR 2022

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录