2022-03-25 更新
VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks
Authors:Yi-Lin Sung, Jaemin Cho, Mohit Bansal
Recently, fine-tuning language models pre-trained on large text corpora have provided huge improvements on vision-and-language (V&L) tasks as well as on pure language tasks. However, fine-tuning the entire parameter set of pre-trained models becomes impractical since the model size is growing rapidly. Hence, in this paper, we introduce adapter-based parameter-efficient transfer learning techniques to V&L models such as VL-BART and VLT5. We evaluate our methods in a unified multi-task setup on both image-text and video-text benchmarks. For the image-text tasks, we use four diverse V&L datasets: VQAv2, GQA, NLVR2 , and MSCOCO image captioning. For video-text tasks, we use TVQA, How2QA, TVC, and YC2C. With careful training and thorough experiments, we benchmark three popular adapter-based methods (Adapter, Hyperformer, Compacter) against the standard full fine-tuning and the recently proposed prompt-tuning approach. We also enhance the efficiency and performance of adapters by sharing their weights to attain knowledge across tasks. Our results demonstrate that training the adapter with the weight-sharing technique (4.18% of total parameters for image-text tasks and 3.39% for video-text tasks) can match the performance of fine-tuning the entire model. Lastly, we present a comprehensive analysis including the combination of adapter and task-specific prompts and the impact of V&L pre-training on adapters. Our code is available at: https://github.com/ylsung/VL_adapter.
PDF CVPR 2022 (15 pages; with new video-text and CLIP-ViL experiments)
论文截图
ViT-FOD: A Vision Transformer based Fine-grained Object Discriminator
Authors:Zi-Chao Zhang, Zhen-Duo Chen, Yongxin Wang, Xin Luo, Xin-Shun Xu
Recently, several Vision Transformer (ViT) based methods have been proposed for Fine-Grained Visual Classification (FGVC).These methods significantly surpass existing CNN-based ones, demonstrating the effectiveness of ViT in FGVC tasks.However, there are some limitations when applying ViT directly to FGVC.First, ViT needs to split images into patches and calculate the attention of every pair, which may result in heavy redundant calculation and unsatisfying performance when handling fine-grained images with complex background and small objects.Second, a standard ViT only utilizes the class token in the final layer for classification, which is not enough to extract comprehensive fine-grained information. To address these issues, we propose a novel ViT based fine-grained object discriminator for FGVC tasks, ViT-FOD for short. Specifically, besides a ViT backbone, it further introduces three novel components, i.e, Attention Patch Combination (APC), Critical Regions Filter (CRF), and Complementary Tokens Integration (CTI). Thereinto, APC pieces informative patches from two images to generate a new image so that the redundant calculation can be reduced. CRF emphasizes tokens corresponding to discriminative regions to generate a new class token for subtle feature learning. To extract comprehensive information, CTI integrates complementary information captured by class tokens in different ViT layers. We conduct comprehensive experiments on widely used datasets and the results demonstrate that ViT-FOD is able to achieve state-of-the-art performance.
PDF
论文截图
GradViT: Gradient Inversion of Vision Transformers
Authors:Ali Hatamizadeh, Hongxu Yin, Holger Roth, Wenqi Li, Jan Kautz, Daguang Xu, Pavlo Molchanov
In this work we demonstrate the vulnerability of vision transformers (ViTs) to gradient-based inversion attacks. During this attack, the original data batch is reconstructed given model weights and the corresponding gradients. We introduce a method, named GradViT, that optimizes random noise into naturally looking images via an iterative process. The optimization objective consists of (i) a loss on matching the gradients, (ii) image prior in the form of distance to batch-normalization statistics of a pretrained CNN model, and (iii) a total variation regularization on patches to guide correct recovery locations. We propose a unique loss scheduling function to overcome local minima during optimization. We evaluate GadViT on ImageNet1K and MS-Celeb-1M datasets, and observe unprecedentedly high fidelity and closeness to the original (hidden) data. During the analysis we find that vision transformers are significantly more vulnerable than previously studied CNNs due to the presence of the attention mechanism. Our method demonstrates new state-of-the-art results for gradient inversion in both qualitative and quantitative metrics. Project page at https://gradvit.github.io/.
PDF CVPR’22 Accepted Paper
论文截图
Transformer Compressed Sensing via Global Image Tokens
Authors:Marlon Bran Lorenzana, Craig Engstrom, Shekhar S. Chandra
Convolutional neural networks (CNN) have demonstrated outstanding Compressed Sensing (CS) performance compared to traditional, hand-crafted methods. However, they are broadly limited in terms of generalisability, inductive bias and difficulty to model long distance relationships. Transformer neural networks (TNN) overcome such issues by implementing an attention mechanism designed to capture dependencies between inputs. However, high-resolution tasks typically require vision Transformers (ViT) to decompose an image into patch-based tokens, limiting inputs to inherently local contexts. We propose a novel image decomposition that naturally embeds images into low-resolution inputs. These Kaleidoscope tokens (KD) provide a mechanism for global attention, at the same computational cost as a patch-based approach. To showcase this development, we replace CNN components in a well-known CS-MRI neural network with TNN blocks and demonstrate the improvements afforded by KD. We also propose an ensemble of image tokens, which enhance overall image quality and reduces model size. Supplementary material is available: https://github.com/uqmarlonbran/TCS.git}{https://github.com/uqmarlonbran/TCS.git
PDF 4 Pages, 4 Figures, 2 Tables