检测/分割/跟踪


2022-03-25 更新

Nuclei instance segmentation and classification in histopathology images with StarDist

Authors:Martin Weigert, Uwe Schmidt

Instance segmentation and classification of nuclei is an important task in computational pathology. We show that StarDist, a deep learning based nuclei segmentation method originally developed for fluorescence microscopy, can be extended and successfully applied to histopathology images. This is substantiated by conducting experiments on the Lizard dataset, and through entering the Colon Nuclei Identification and Counting (CoNIC) challenge 2022. At the end of the preliminary test phase of CoNIC, our approach ranked first on the leaderboard for the segmentation and classification task.
PDF

论文截图

Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

Authors:Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasileios Belagiannis, Gustavo Carneiro

Consistency learning using input image, feature, or network perturbations has shown remarkable results in semi-supervised semantic segmentation, but this approach can be seriously affected by inaccurate predictions of unlabelled training images. There are two consequences of these inaccurate predictions: 1) the training based on the “strict” cross-entropy (CE) loss can easily overfit prediction mistakes, leading to confirmation bias; and 2) the perturbations applied to these inaccurate predictions will use potentially erroneous predictions as training signals, degrading consistency learning. In this paper, we address the prediction accuracy problem of consistency learning methods with novel extensions of the mean-teacher (MT) model, which include a new auxiliary teacher, and the replacement of MT’s mean square error (MSE) by a stricter confidence-weighted cross-entropy (Conf-CE) loss. The accurate prediction by this model allows us to use a challenging combination of network, input data and feature perturbations to improve the consistency learning generalisation, where the feature perturbations consist of a new adversarial perturbation. Results on public benchmarks show that our approach achieves remarkable improvements over the previous SOTA methods in the field.
PDF CVPR 2022

论文截图

Focus-and-Detect: A Small Object Detection Framework for Aerial Images

Authors:Onur Can Koyun, Reyhan Kevser Keser, İbrahim Batuhan Akkaya, Behçet Uğur Töreyin

Despite recent advances, object detection in aerial images is still a challenging task. Specific problems in aerial images makes the detection problem harder, such as small objects, densely packed objects, objects in different sizes and with different orientations. To address small object detection problem, we propose a two-stage object detection framework called “Focus-and-Detect”. The first stage which consists of an object detector network supervised by a Gaussian Mixture Model, generates clusters of objects constituting the focused regions. The second stage, which is also an object detector network, predicts objects within the focal regions. Incomplete Box Suppression (IBS) method is also proposed to overcome the truncation effect of region search approach. Results indicate that the proposed two-stage framework achieves an AP score of 42.06 on VisDrone validation dataset, surpassing all other state-of-the-art small object detection methods reported in the literature, to the best of authors’ knowledge.
PDF 12 pages, 6 figures

论文截图

QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small Object Detection

Authors:Chenhongyi Yang, Zehao Huang, Naiyan Wang

While general object detection with deep learning has achieved great success in the past few years, the performance and efficiency of detecting small objects are far from satisfactory. The most common and effective way to promote small object detection is to use high-resolution images or feature maps. However, both approaches induce costly computation since the computational cost grows squarely as the size of images and features increases. To get the best of two worlds, we propose QueryDet that uses a novel query mechanism to accelerate the inference speed of feature-pyramid based object detectors. The pipeline composes two steps: it first predicts the coarse locations of small objects on low-resolution features and then computes the accurate detection results using high-resolution features sparsely guided by those coarse positions. In this way, we can not only harvest the benefit of high-resolution feature maps but also avoid useless computation for the background area. On the popular COCO dataset, the proposed method improves the detection mAP by 1.0 and mAP-small by 2.0, and the high-resolution inference speed is improved to 3.0x on average. On VisDrone dataset, which contains more small objects, we create a new state-of-the-art while gaining a 2.3x high-resolution acceleration on average. Code is available at https://github.com/ChenhongyiYang/QueryDet-PyTorch.
PDF CVPR 2022

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录