GAN


2022-03-24 更新

CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware Training

Authors:Haitian Zheng, Zhe Lin, Jingwan Lu, Scott Cohen, Eli Shechtman, Connelly Barnes, Jianming Zhang, Ning Xu, Sohrab Amirghodsi, Jiebo Luo

Recent image inpainting methods have made great progress but often struggle to generate plausible image structures when dealing with large holes in complex images. This is partially due to the lack of effective network structures that can capture both the long-range dependency and high-level semantics of an image. To address these problems, we propose cascaded modulation GAN (CM-GAN), a new network design consisting of an encoder with Fourier convolution blocks that extract multi-scale feature representations from the input image with holes and a StyleGAN-like decoder with a novel cascaded global-spatial modulation block at each scale level. In each decoder block, global modulation is first applied to perform coarse semantic-aware structure synthesis, then spatial modulation is applied on the output of global modulation to further adjust the feature map in a spatially adaptive fashion. In addition, we design an object-aware training scheme to prevent the network from hallucinating new objects inside holes, fulfilling the needs of object removal tasks in real-world scenarios. Extensive experiments are conducted to show that our method significantly outperforms existing methods in both quantitative and qualitative evaluation.
PDF 30 pages, 18 figures

论文截图

One-Shot Adaptation of GAN in Just One CLIP

Authors:Gihyun Kwon, Jong Chul Ye

There are many recent research efforts to fine-tune a pre-trained generator with a few target images to generate images of a novel domain. Unfortunately, these methods often suffer from overfitting or under-fitting when fine-tuned with a single target image. To address this, here we present a novel single-shot GAN adaptation method through unified CLIP space manipulations. Specifically, our model employs a two-step training strategy: reference image search in the source generator using a CLIP-guided latent optimization, followed by generator fine-tuning with a novel loss function that imposes CLIP space consistency between the source and adapted generators. To further improve the adapted model to produce spatially consistent samples with respect to the source generator, we also propose contrastive regularization for patchwise relationships in the CLIP space. Experimental results show that our model generates diverse outputs with the target texture and outperforms the baseline models both qualitatively and quantitatively. Furthermore, we show that our CLIP space manipulation strategy allows more effective attribute editing.
PDF Image compressed version

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录