2022-03-23 更新
Tree Energy Loss: Towards Sparsely Annotated Semantic Segmentation
Authors:Zhiyuan Liang, Tiancai Wang, Xiangyu Zhang, Jian Sun, Jianbing Shen
Sparsely annotated semantic segmentation (SASS) aims to train a segmentation network with coarse-grained (i.e., point-, scribble-, and block-wise) supervisions, where only a small proportion of pixels are labeled in each image. In this paper, we propose a novel tree energy loss for SASS by providing semantic guidance for unlabeled pixels. The tree energy loss represents images as minimum spanning trees to model both low-level and high-level pair-wise affinities. By sequentially applying these affinities to the network prediction, soft pseudo labels for unlabeled pixels are generated in a coarse-to-fine manner, achieving dynamic online self-training. The tree energy loss is effective and easy to be incorporated into existing frameworks by combining it with a traditional segmentation loss. Compared with previous SASS methods, our method requires no multistage training strategies, alternating optimization procedures, additional supervised data, or time-consuming post-processing while outperforming them in all SASS settings. Code is available at https://github.com/megvii-research/TreeEnergyLoss.
PDF Accepted by CVPR2022
论文截图
TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers
Authors:Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun Chen, Hongbo Fu, Chiew-Lan Tai
LiDAR and camera are two important sensors for 3D object detection in autonomous driving. Despite the increasing popularity of sensor fusion in this field, the robustness against inferior image conditions, e.g., bad illumination and sensor misalignment, is under-explored. Existing fusion methods are easily affected by such conditions, mainly due to a hard association of LiDAR points and image pixels, established by calibration matrices. We propose TransFusion, a robust solution to LiDAR-camera fusion with a soft-association mechanism to handle inferior image conditions. Specifically, our TransFusion consists of convolutional backbones and a detection head based on a transformer decoder. The first layer of the decoder predicts initial bounding boxes from a LiDAR point cloud using a sparse set of object queries, and its second decoder layer adaptively fuses the object queries with useful image features, leveraging both spatial and contextual relationships. The attention mechanism of the transformer enables our model to adaptively determine where and what information should be taken from the image, leading to a robust and effective fusion strategy. We additionally design an image-guided query initialization strategy to deal with objects that are difficult to detect in point clouds. TransFusion achieves state-of-the-art performance on large-scale datasets. We provide extensive experiments to demonstrate its robustness against degenerated image quality and calibration errors. We also extend the proposed method to the 3D tracking task and achieve the 1st place in the leaderboard of nuScenes tracking, showing its effectiveness and generalization capability.
PDF Accepted to CVPR2022; Code at \url{https://github.com/XuyangBai/TransFusion}; Based on this work, we achieve the 1st place in the leaderboard of nuScenes tracking
论文截图
Weakly-Supervised Salient Object Detection Using Point Supervison
Authors:Shuyong Gao, Wei Zhang, Yan Wang, Qianyu Guo, Chenglong Zhang, Yangji He, Wenqiang Zhang
Current state-of-the-art saliency detection models rely heavily on large datasets of accurate pixel-wise annotations, but manually labeling pixels is time-consuming and labor-intensive. There are some weakly supervised methods developed for alleviating the problem, such as image label, bounding box label, and scribble label, while point label still has not been explored in this field. In this paper, we propose a novel weakly-supervised salient object detection method using point supervision. To infer the saliency map, we first design an adaptive masked flood filling algorithm to generate pseudo labels. Then we develop a transformer-based point-supervised saliency detection model to produce the first round of saliency maps. However, due to the sparseness of the label, the weakly supervised model tends to degenerate into a general foreground detection model. To address this issue, we propose a Non-Salient Suppression (NSS) method to optimize the erroneous saliency maps generated in the first round and leverage them for the second round of training. Moreover, we build a new point-supervised dataset (P-DUTS) by relabeling the DUTS dataset. In P-DUTS, there is only one labeled point for each salient object. Comprehensive experiments on five largest benchmark datasets demonstrate our method outperforms the previous state-of-the-art methods trained with the stronger supervision and even surpass several fully supervised state-of-the-art models. The code is available at: https://github.com/shuyonggao/PSOD.
PDF accepted by AAAI2022