2022-03-22 更新
An Empirical Study of Training End-to-End Vision-and-Language Transformers
Authors:Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang Wang, Lijuan Wang, Chenguang Zhu, Pengchuan Zhang, Lu Yuan, Nanyun Peng, Zicheng Liu, Michael Zeng
Vision-and-language (VL) pre-training has proven to be highly effective on various VL downstream tasks. While recent work has shown that fully transformer-based VL models can be more efficient than previous region-feature-based methods, their performance on downstream tasks often degrades significantly. In this paper, we present METER, a Multimodal End-to-end TransformER framework, through which we investigate how to design and pre-train a fully transformer-based VL model in an end-to-end manner. Specifically, we dissect the model designs along multiple dimensions: vision encoders (e.g., CLIP-ViT, Swin transformer), text encoders (e.g., RoBERTa, DeBERTa), multimodal fusion module (e.g., merged attention vs. co-attention), architectural design (e.g., encoder-only vs. encoder-decoder), and pre-training objectives (e.g., masked image modeling). We conduct comprehensive experiments and provide insights on how to train a performant VL transformer. METER achieves an accuracy of 77.64% on the VQAv2 test-std set using only 4M images for pre-training, surpassing the state-of-the-art region-feature-based model by 1.04%, and outperforming the previous best fully transformer-based model by 1.6%. Notably, when further scaled up, our best VQA model achieves an accuracy of 80.54%. Code and pre-trained models are released at https://github.com/zdou0830/METER.
PDF CVPR 2022
论文截图
UVCGAN: UNet Vision Transformer cycle-consistent GAN for unpaired image-to-image translation
Authors:Dmitrii Torbunov, Yi Huang, Haiwang Yu, Jin Huang, Shinjae Yoo, Meifeng Lin, Brett Viren, Yihui Ren
Image-to-image translation has broad applications in art, design, and scientific simulations. The original CycleGAN model emphasizes one-to-one mapping via a cycle-consistent loss, while more recent works promote one-to-many mapping to boost the diversity of the translated images. With scientific simulation and one-to-one needs in mind, this work examines if equipping CycleGAN with a vision transformer (ViT) and employing advanced generative adversarial network (GAN) training techniques can achieve better performance. The resulting UNet ViT Cycle-consistent GAN (UVCGAN) model is compared with previous best-performing models on open benchmark image-to-image translation datasets, Selfie2Anime and CelebA. UVCGAN performs better and retains a strong correlation between the original and translated images. An accompanying ablation study shows that the gradient penalty and BERT-like pre-training also contribute to the improvement.~To promote reproducibility and open science, the source code, hyperparameter configurations, and pre-trained model will be made available at: https://github.com/LS4GAN/uvcgan.
PDF 5 pages, 2 figures, 2 tables
论文截图
simCrossTrans: A Simple Cross-Modality Transfer Learning for Object Detection with ConvNets or Vision Transformers
Authors:Xiaoke Shen, Ioannis Stamos
Transfer learning is widely used in computer vision (CV), natural language processing (NLP) and achieves great success. Most transfer learning systems are based on the same modality (e.g. RGB image in CV and text in NLP). However, the cross-modality transfer learning (CMTL) systems are scarce. In this work, we study CMTL from 2D to 3D sensor to explore the upper bound performance of 3D sensor only systems, which play critical roles in robotic navigation and perform well in low light scenarios. While most CMTL pipelines from 2D to 3D vision are complicated and based on Convolutional Neural Networks (ConvNets), ours is easy to implement, expand and based on both ConvNets and Vision transformers(ViTs): 1) By converting point clouds to pseudo-images, we can use an almost identical network from pre-trained models based on 2D images. This makes our system easy to implement and expand. 2) Recently ViTs have been showing good performance and robustness to occlusions, one of the key reasons for poor performance of 3D vision systems. We explored both ViT and ConvNet with similar model sizes to investigate the performance difference. We name our approach simCrossTrans: simple cross-modality transfer learning with ConvNets or ViTs. Experiments on SUN RGB-D dataset show: with simCrossTrans we achieve $13.2\%$ and $16.1\%$ absolute performance gain based on ConvNets and ViTs separately. We also observed the ViTs based performs $9.7\%$ better than the ConvNets one, showing the power of simCrossTrans with ViT. simCrossTrans with ViTs surpasses the previous state-of-the-art (SOTA) by a large margin of $+15.4\%$ mAP50. Compared with the previous 2D detection SOTA based RGB images, our depth image only system only has a $1\%$ gap. The code, training/inference logs and models are publicly available at https://github.com/liketheflower/simCrossTrans
PDF