2022-03-17 更新
Towards Practical Certifiable Patch Defense with Vision Transformer
Authors:Zhaoyu Chen, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, Wenqiang Zhang
Patch attacks, one of the most threatening forms of physical attack in adversarial examples, can lead networks to induce misclassification by modifying pixels arbitrarily in a continuous region. Certifiable patch defense can guarantee robustness that the classifier is not affected by patch attacks. Existing certifiable patch defenses sacrifice the clean accuracy of classifiers and only obtain a low certified accuracy on toy datasets. Furthermore, the clean and certified accuracy of these methods is still significantly lower than the accuracy of normal classification networks, which limits their application in practice. To move towards a practical certifiable patch defense, we introduce Vision Transformer (ViT) into the framework of Derandomized Smoothing (DS). Specifically, we propose a progressive smoothed image modeling task to train Vision Transformer, which can capture the more discriminable local context of an image while preserving the global semantic information. For efficient inference and deployment in the real world, we innovatively reconstruct the global self-attention structure of the original ViT into isolated band unit self-attention. On ImageNet, under 2% area patch attacks our method achieves 41.70% certified accuracy, a nearly 1-fold increase over the previous best method (26.00%). Simultaneously, our method achieves 78.58% clean accuracy, which is quite close to the normal ResNet-101 accuracy. Extensive experiments show that our method obtains state-of-the-art clean and certified accuracy with inferring efficiently on CIFAR-10 and ImageNet.
PDF Accepted by CVPR2022
论文截图
Open Set Recognition using Vision Transformer with an Additional Detection Head
Authors:Feiyang Cai, Zhenkai Zhang, Jie Liu, Xenofon Koutsoukos
Deep neural networks have demonstrated prominent capacities for image classification tasks in a closed set setting, where the test data come from the same distribution as the training data. However, in a more realistic open set scenario, traditional classifiers with incomplete knowledge cannot tackle test data that are not from the training classes. Open set recognition (OSR) aims to address this problem by both identifying unknown classes and distinguishing known classes simultaneously. In this paper, we propose a novel approach to OSR that is based on the vision transformer (ViT) technique. Specifically, our approach employs two separate training stages. First, a ViT model is trained to perform closed set classification. Then, an additional detection head is attached to the embedded features extracted by the ViT, trained to force the representations of known data to class-specific clusters compactly. Test examples are identified as known or unknown based on their distance to the cluster centers. To the best of our knowledge, this is the first time to leverage ViT for the purpose of OSR, and our extensive evaluation against several OSR benchmark datasets reveals that our approach significantly outperforms other baseline methods and obtains new state-of-the-art performance.
PDF under review
论文截图
Unified Visual Transformer Compression
Authors:Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji Liu, Zhangyang Wang
Vision transformers (ViTs) have gained popularity recently. Even without customized image operators such as convolutions, ViTs can yield competitive performance when properly trained on massive data. However, the computational overhead of ViTs remains prohibitive, due to stacking multi-head self-attention modules and else. Compared to the vast literature and prevailing success in compressing convolutional neural networks, the study of Vision Transformer compression has also just emerged, and existing works focused on one or two aspects of compression. This paper proposes a unified ViT compression framework that seamlessly assembles three effective techniques: pruning, layer skipping, and knowledge distillation. We formulate a budget-constrained, end-to-end optimization framework, targeting jointly learning model weights, layer-wise pruning ratios/masks, and skip configurations, under a distillation loss. The optimization problem is then solved using the primal-dual algorithm. Experiments are conducted with several ViT variants, e.g. DeiT and T2T-ViT backbones on the ImageNet dataset, and our approach consistently outperforms recent competitors. For example, DeiT-Tiny can be trimmed down to 50\% of the original FLOPs almost without losing accuracy. Codes are available online:~\url{https://github.com/VITA-Group/UVC}.
PDF Accepted by ICLR’22
论文截图
The Devil Is in the Details: Window-based Attention for Image Compression
Authors:Renjie Zou, Chunfeng Song, Zhaoxiang Zhang
Learned image compression methods have exhibited superior rate-distortion performance than classical image compression standards. Most existing learned image compression models are based on Convolutional Neural Networks (CNNs). Despite great contributions, a main drawback of CNN based model is that its structure is not designed for capturing local redundancy, especially the non-repetitive textures, which severely affects the reconstruction quality. Therefore, how to make full use of both global structure and local texture becomes the core problem for learning-based image compression. Inspired by recent progresses of Vision Transformer (ViT) and Swin Transformer, we found that combining the local-aware attention mechanism with the global-related feature learning could meet the expectation in image compression. In this paper, we first extensively study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block. The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models. Moreover, we propose a novel Symmetrical TransFormer (STF) framework with absolute transformer blocks in the down-sampling encoder and up-sampling decoder. Extensive experimental evaluations have shown that the proposed method is effective and outperforms the state-of-the-art methods. The code is publicly available at https://github.com/Googolxx/STF.
PDF Accepted by CVPR 2022