检测/分割/跟踪


2022-03-16 更新

Joint Distribution Alignment via Adversarial Learning for Domain Adaptive Object Detection

Authors:Bo Zhang, Tao Chen, Bin Wang, Ruoyao Li

Unsupervised domain adaptive object detection aims to adapt a well-trained detector from its original source domain with rich labeled data to a new target domain with unlabeled data. Recently, mainstream approaches perform this task through adversarial learning, yet still suffer from two limitations. First, they mainly align marginal distribution by unsupervised cross-domain feature matching, and ignore each feature’s categorical and positional information that can be exploited for conditional alignment; Second, they treat all classes as equally important for transferring cross-domain knowledge and ignore that different classes usually have different transferability. In this paper, we propose a joint adaptive detection framework (JADF) to address the above challenges. First, an end-to-end joint adversarial adaptation framework for object detection is proposed, which aligns both marginal and conditional distributions between domains without introducing any extra hyperparameter. Next, to consider the transferability of each object class, a metric for class-wise transferability assessment is proposed, which is incorporated into the JADF objective for domain adaptation. Further, an extended study from unsupervised domain adaptation (UDA) to unsupervised few-shot domain adaptation (UFDA) is conducted, where only a few unlabeled training images are available in unlabeled target domain. Extensive experiments validate that JADF is effective in both the UDA and UFDA settings, achieving significant performance gains over existing state-of-the-art cross-domain detection methods.
PDF Accepted by IEEE T-MM, 2021, the code is available at https://github.com/BOBrown/JADF-caffe

论文截图

Semi-supervision semantic segmentation with uncertainty-guided self cross supervision

Authors:Yunyang Zhang, Zhiqiang Gong, Xiaohu Zheng, Xiaoyu Zhao, Wen Yao

As a powerful way of realizing semi-supervised segmentation, the cross supervision method learns cross consistency based on independent ensemble models using abundant unlabeled images. However, the wrong pseudo labeling information generated by cross supervision would confuse the training process and negatively affect the effectiveness of the segmentation model. Besides, the training process of ensemble models in such methods also multiplies the cost of computation resources and decreases the training efficiency. To solve these problems, we propose a novel cross supervision method, namely uncertainty-guided self cross supervision (USCS). In addition to ensemble models, we first design a multi-input multi-output (MIMO) segmentation model which can generate multiple outputs with shared model and consequently impose consistency over the outputs, saving the cost on parameters and calculations. On the other hand, we employ uncertainty as guided information to encourage the model to focus on the high confident regions of pseudo labels and mitigate the effects of wrong pseudo labeling in self cross supervision, improving the performance of the segmentation model. Extensive experiments show that our method achieves state-of-the-art performance while saving 40.5% and 49.1% cost on parameters and calculations.
PDF

论文截图

On Hyperbolic Embeddings in 2D Object Detection

Authors:Christopher Lang, Alexander Braun, Abhinav Valada

Object detection, for the most part, has been formulated in the euclidean space, where euclidean or spherical geodesic distances measure the similarity of an image region to an object class prototype. In this work, we study whether a hyperbolic geometry better matches the underlying structure of the object classification space. We incorporate a hyperbolic classifier in two-stage, keypoint-based, and transformer-based object detection architectures and evaluate them on large-scale, long-tailed, and zero-shot object detection benchmarks. In our extensive experimental evaluations, we observe categorical class hierarchies emerging in the structure of the classification space, resulting in lower classification errors and boosting the overall object detection performance.
PDF 14 pages, 5 figures

论文截图

MUM : Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection

Authors:JongMok Kim, Jooyoung Jang, Seunghyeon Seo, Jisoo Jeong, Jongkeun Na, Nojun Kwak

Many recent semi-supervised learning (SSL) studies build teacher-student architecture and train the student network by the generated supervisory signal from the teacher. Data augmentation strategy plays a significant role in the SSL framework since it is hard to create a weak-strong augmented input pair without losing label information. Especially when extending SSL to semi-supervised object detection (SSOD), many strong augmentation methodologies related to image geometry and interpolation-regularization are hard to utilize since they possibly hurt the location information of the bounding box in the object detection task. To address this, we introduce a simple yet effective data augmentation method, Mix/UnMix (MUM), which unmixes feature tiles for the mixed image tiles for the SSOD framework. Our proposed method makes mixed input image tiles and reconstructs them in the feature space. Thus, MUM can enjoy the interpolation-regularization effect from non-interpolated pseudo-labels and successfully generate a meaningful weak-strong pair. Furthermore, MUM can be easily equipped on top of various SSOD methods. Extensive experiments on MS-COCO and PASCAL VOC datasets demonstrate the superiority of MUM by consistently improving the mAP performance over the baseline in all the tested SSOD benchmark protocols.
PDF Accept to CVPR2022

论文截图

Implicit Motion Handling for Video Camouflaged Object Detection

Authors:Xuelian Cheng, Huan Xiong, Deng-Ping Fan, Yiran Zhong, Mehrtash Harandi, Tom Drummond, Zongyuan Ge

We propose a new video camouflaged object detection (VCOD) framework that can exploit both short-term dynamics and long-term temporal consistency to detect camouflaged objects from video frames. An essential property of camouflaged objects is that they usually exhibit patterns similar to the background and thus make them hard to identify from still images. Therefore, effectively handling temporal dynamics in videos becomes the key for the VCOD task as the camouflaged objects will be noticeable when they move. However, current VCOD methods often leverage homography or optical flows to represent motions, where the detection error may accumulate from both the motion estimation error and the segmentation error. On the other hand, our method unifies motion estimation and object segmentation within a single optimization framework. Specifically, we build a dense correlation volume to implicitly capture motions between neighbouring frames and utilize the final segmentation supervision to optimize the implicit motion estimation and segmentation jointly. Furthermore, to enforce temporal consistency within a video sequence, we jointly utilize a spatio-temporal transformer to refine the short-term predictions. Extensive experiments on VCOD benchmarks demonstrate the architectural effectiveness of our approach. We also provide a large-scale VCOD dataset named MoCA-Mask with pixel-level handcrafted ground-truth masks and construct a comprehensive VCOD benchmark with previous methods to facilitate research in this direction. Dataset Link: https://xueliancheng.github.io/SLT-Net-project.
PDF Accepted to CVPR 2022; Xuelian Cheng and Huan Xiong made equal contributions; Corresponding author: Deng-Ping Fan (dengpfan@gmail.com). Dataset: https://xueliancheng.github.io/SLT-Net-project

论文截图

SATS: Self-Attention Transfer for Continual Semantic Segmentation

Authors:Yiqiao Qiu, Yixing Shen, Zhuohao Sun, Yanchong Zheng, Xiaobin Chang, Weishi Zheng, Ruixuan Wang

Continually learning to segment more and more types of image regions is a desired capability for many intelligent systems. However, such continual semantic segmentation suffers from the same catastrophic forgetting issue as in continual classification learning. While multiple knowledge distillation strategies originally for continual classification have been well adapted to continual semantic segmentation, they only consider transferring old knowledge based on the outputs from one or more layers of deep fully convolutional networks. Different from existing solutions, this study proposes to transfer a new type of information relevant to knowledge, i.e. the relationships between elements (Eg. pixels or small local regions) within each image which can capture both within-class and between-class knowledge. The relationship information can be effectively obtained from the self-attention maps in a Transformer-style segmentation model. Considering that pixels belonging to the same class in each image often share similar visual properties, a class-specific region pooling is applied to provide more efficient relationship information for knowledge transfer. Extensive evaluations on multiple public benchmarks support that the proposed self-attention transfer method can further effectively alleviate the catastrophic forgetting issue, and its flexible combination with one or more widely adopted strategies significantly outperforms state-of-the-art solu
PDF

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录