无监督/半监督/对比学习


2022-03-15 更新

Contrastive Fine-grained Class Clustering via Generative Adversarial Networks

Authors:Yunji Kim, Jung-Woo Ha

Unsupervised fine-grained class clustering is a practical yet challenging task due to the difficulty of feature representations learning of subtle object details. We introduce C3-GAN, a method that leverages the categorical inference power of InfoGAN with contrastive learning. We aim to learn feature representations that encourage a dataset to form distinct cluster boundaries in the embedding space, while also maximizing the mutual information between the latent code and its image observation. Our approach is to train a discriminator, which is also used for inferring clusters, to optimize the contrastive loss, where image-latent pairs that maximize the mutual information are considered as positive pairs and the rest as negative pairs. Specifically, we map the input of a generator, which was sampled from the categorical distribution, to the embedding space of the discriminator and let them act as a cluster centroid. In this way, C3-GAN succeeded in learning a clustering-friendly embedding space where each cluster is distinctively separable. Experimental results show that C3-GAN achieved the state-of-the-art clustering performance on four fine-grained image datasets, while also alleviating the mode collapse phenomenon. Code is available at https://github.com/naver-ai/c3-gan.
PDF ICLR 2022

论文截图

Motion-aware Contrastive Video Representation Learning via Foreground-background Merging

Authors:Shuangrui Ding, Maomao Li, Tianyu Yang, Rui Qian, Haohang Xu, Qingyi Chen, Jue Wang, Hongkai Xiong

In light of the success of contrastive learning in the image domain, current self-supervised video representation learning methods usually employ contrastive loss to facilitate video representation learning. When naively pulling two augmented views of a video closer, the model however tends to learn the common static background as a shortcut but fails to capture the motion information, a phenomenon dubbed as background bias. Such bias makes the model suffer from weak generalization ability, leading to worse performance on downstream tasks such as action recognition. To alleviate such bias, we propose \textbf{F}oreground-b\textbf{a}ckground \textbf{Me}rging (FAME) to deliberately compose the moving foreground region of the selected video onto the static background of others. Specifically, without any off-the-shelf detector, we extract the moving foreground out of background regions via the frame difference and color statistics, and shuffle the background regions among the videos. By leveraging the semantic consistency between the original clips and the fused ones, the model focuses more on the motion patterns and is debiased from the background shortcut. Extensive experiments demonstrate that FAME can effectively resist background cheating and thus achieve the state-of-the-art performance on downstream tasks across UCF101, HMDB51, and Diving48 datasets. The code and configurations are released at https://github.com/Mark12Ding/FAME.
PDF CVPR2022 camera ready

论文截图

Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

Authors:Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, Junjie Yan

Recently, large-scale Contrastive Language-Image Pre-training (CLIP) has attracted unprecedented attention for its impressive zero-shot recognition ability and excellent transferability to downstream tasks. However, CLIP is quite data-hungry and requires 400M image-text pairs for pre-training, thereby restricting its adoption. This work proposes a novel training paradigm, Data efficient CLIP (DeCLIP), to alleviate this limitation. We demonstrate that by carefully utilizing the widespread supervision among the image-text pairs, our De-CLIP can learn generic visual features more efficiently. Instead of using the single image-text contrastive supervision, we fully exploit data potential through the use of (1) self-supervision within each modality; (2) multi-view supervision across modalities; (3) nearest-neighbor supervision from other similar pairs. Benefiting from intrinsic supervision, our DeCLIP-ResNet50 can achieve 60.4% zero-shot top1 accuracy on ImageNet, which is 0.8% above the CLIP-ResNet50 while using 7.1 x fewer data. Our DeCLIP-ResNet50 outperforms its counterpart in 8 out of 11 visual datasets when transferred to downstream tasks. Moreover, Scaling up the model and computing also works well in our framework.Our code, dataset and models are released at: https://github.com/Sense-GVT/DeCLIP
PDF 17 pages, 10 figures

论文截图

M5Product: Self-harmonized Contrastive Learning for E-commercial Multi-modal Pretraining

Authors:Xiao Dong, Xunlin Zhan, Yangxin Wu, Yunchao Wei, Michael C. Kampffmeyer, Xiaoyong Wei, Minlong Lu, Yaowei Wang, Xiaodan Liang

Despite the potential of multi-modal pre-training to learn highly discriminative feature representations from complementary data modalities, current progress is being slowed by the lack of large-scale modality-diverse datasets. By leveraging the natural suitability of E-commerce, where different modalities capture complementary semantic information, we contribute a large-scale multi-modal pre-training dataset M5Product. The dataset comprises 5 modalities (image, text, table, video, and audio), covers over 6,000 categories and 5,000 attributes, and is 500 larger than the largest publicly available dataset with a similar number of modalities. Furthermore, M5Product contains incomplete modality pairs and noise while also having a long-tailed distribution, resembling most real-world problems. We further propose Self-harmonized ContrAstive LEarning (SCALE), a novel pretraining framework that integrates the different modalities into a unified model through an adaptive feature fusion mechanism, where the importance of each modality is learned directly from the modality embeddings and impacts the inter-modality contrastive learning and masked tasks within a multi-modal transformer model. We evaluate the current multi-modal pre-training state-of-the-art approaches and benchmark their ability to learn from unlabeled data when faced with the large number of modalities in the M5Product dataset. We conduct extensive experiments on four downstream tasks and demonstrate the superiority of our SCALE model, providing insights into the importance of dataset scale and diversity.
PDF

论文截图

Unsupervised Lifelong Person Re-identification via Contrastive Rehearsal

Authors:Hao Chen, Benoit Lagadec, Francois Bremond

Existing unsupervised person re-identification (ReID) methods focus on adapting a model trained on a source domain to a fixed target domain. However, an adapted ReID model usually only works well on a certain target domain, but can hardly memorize the source domain knowledge and generalize to upcoming unseen data. In this paper, we propose unsupervised lifelong person ReID, which focuses on continuously conducting unsupervised domain adaptation on new domains without forgetting the knowledge learnt from old domains. To tackle unsupervised lifelong ReID, we conduct a contrastive rehearsal on a small number of stored old samples while sequentially adapting to new domains. We further set an image-to-image similarity constraint between old and new models to regularize the model updates in a way that suits old knowledge. We sequentially train our model on several large-scale datasets in an unsupervised manner and test it on all seen domains as well as several unseen domains to validate the generalizability of our method. Our proposed unsupervised lifelong method achieves strong generalizability, which significantly outperforms previous lifelong methods on both seen and unseen domains. Code will be made available at https://github.com/chenhao2345/UCR.
PDF

论文截图

UNIMO: Towards Unified-Modal Understanding and Generation via Cross-Modal Contrastive Learning

Authors:Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao Liu, Jiachen Liu, Hua Wu, Haifeng Wang

Existed pre-training methods either focus on single-modal tasks or multi-modal tasks, and cannot effectively adapt to each other. They can only utilize single-modal data (i.e. text or image) or limited multi-modal data (i.e. image-text pairs). In this work, we propose a unified-modal pre-training architecture, namely UNIMO, which can effectively adapt to both single-modal and multi-modal understanding and generation tasks. Large scale of free text corpus and image collections can be utilized to improve the capability of visual and textual understanding, and cross-modal contrastive learning (CMCL) is leveraged to align the textual and visual information into a unified semantic space over a corpus of image-text pairs. As the non-paired single-modal data is very rich, our model can utilize much larger scale of data to learn more generalizable representations. Moreover, the textual knowledge and visual knowledge can enhance each other in the unified semantic space. The experimental results show that UNIMO significantly improves the performance of several single-modal and multi-modal downstream tasks. Our code and pre-trained models are public at the UNIMO project page https://unimo-ptm.github.io/
PDF The paper has been accepted by the main conference of ACL2021 as a long paper

论文截图

Cross-View-Prediction: Exploring Contrastive Feature for Hyperspectral Image Classification

Authors:Haotian Wu, Anyu Zhang, Zeyu Cao

This paper presents a self-supervised feature learning method for hyperspectral image classification. Our method tries to construct two different views of the raw hyperspectral image through a cross-representation learning method. And then to learn semantically consistent representation over the created views by contrastive learning method. Specifically, four cross-channel-prediction based augmentation methods are naturally designed to utilize the high dimension characteristic of hyperspectral data for the view construction. And the better representative features are learned by maximizing mutual information and minimizing conditional entropy across different views from our contrastive network. This ‘Cross-View-Predicton’ style is straightforward and gets the state-of-the-art performance of unsupervised classification with a simple SVM classifier.
PDF

论文截图

Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

Authors:Ye Du, Zehua Fu, Qingjie Liu, Yunhong Wang

Though image-level weakly supervised semantic segmentation (WSSS) has achieved great progress with Class Activation Maps (CAMs) as the cornerstone, the large supervision gap between classification and segmentation still hampers the model to generate more complete and precise pseudo masks for segmentation. In this study, we propose weakly-supervised pixel-to-prototype contrast that can provide pixel-level supervisory signals to narrow the gap. Guided by two intuitive priors, our method is executed across different views and within per single view of an image, aiming to impose cross-view feature semantic consistency regularization and facilitate intra(inter)-class compactness(dispersion) of the feature space. Our method can be seamlessly incorporated into existing WSSS models without any changes to the base networks and does not incur any extra inference burden. Extensive experiments manifest that our method consistently improves two strong baselines by large margins, demonstrating the effectiveness. Specifically, built on top of SEAM, we improve the initial seed mIoU on PASCAL VOC 2012 from 55.4% to 61.5%. Moreover, armed with our method, we increase the segmentation mIoU of EPS from 70.8% to 73.6%, achieving new state-of-the-art.
PDF 10 pages, 5 figures. Accepted by CVPR’22

论文截图

Incremental False Negative Detection for Contrastive Learning

Authors:Tsai-Shien Chen, Wei-Chih Hung, Hung-Yu Tseng, Shao-Yi Chien, Ming-Hsuan Yang

Self-supervised learning has recently shown great potential in vision tasks through contrastive learning, which aims to discriminate each image, or instance, in the dataset. However, such instance-level learning ignores the semantic relationship among instances and sometimes undesirably repels the anchor from the semantically similar samples, termed as “false negatives”. In this work, we show that the unfavorable effect from false negatives is more significant for the large-scale datasets with more semantic concepts. To address the issue, we propose a novel self-supervised contrastive learning framework that incrementally detects and explicitly removes the false negative samples. Specifically, following the training process, our method dynamically detects increasing high-quality false negatives considering that the encoder gradually improves and the embedding space becomes more semantically structural. Next, we discuss two strategies to explicitly remove the detected false negatives during contrastive learning. Extensive experiments show that our framework outperforms other self-supervised contrastive learning methods on multiple benchmarks in a limited resource setup.
PDF ICLR 2022

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录