2022-03-14 更新
Embedding Earth: Self-supervised contrastive pre-training for dense land cover classification
Authors:Michail Tarasiou, Stefanos Zafeiriou
In training machine learning models for land cover semantic segmentation there is a stark contrast between the availability of satellite imagery to be used as inputs and ground truth data to enable supervised learning. While thousands of new satellite images become freely available on a daily basis, getting ground truth data is still very challenging, time consuming and costly. In this paper we present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery to improve performance on downstream dense land cover classification tasks. Performing an extensive experimental evaluation spanning four countries and two continents we use models pre-trained with our proposed method as initialization points for supervised land cover semantic segmentation and observe significant improvements up to 25% absolute mIoU. In every case tested we outperform random initialization, especially so when ground truth data are scarse. Through a series of ablation studies we explore the qualities of the proposed approach and find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme as a replacement to random initialization for Earth observation tasks. Code will be uploaded soon at https://github.com/michaeltrs/DeepSatModels.
PDF Self-supervised pre-training for semantic segmentation. Replacement to random initialization
论文截图
Democratizing Contrastive Language-Image Pre-training: A CLIP Benchmark of Data, Model, and Supervision
Authors:Yufeng Cui, Lichen Zhao, Feng Liang, Yangguang Li, Jing Shao
Contrastive Language-Image Pretraining (CLIP) has emerged as a novel paradigm to learn visual models from language supervision. While researchers continue to push the frontier of CLIP, reproducing these works remains challenging. This is because researchers do not choose consistent training recipes and even use different data, hampering the fair comparison between different methods. In this work, we propose CLIP-benchmark, a first attempt to evaluate, analyze, and benchmark CLIP and its variants. We conduct a comprehensive analysis of three key factors: data, supervision, and model architecture. We find considerable intuitive or counter-intuitive insights: (1). Data quality has a significant impact on performance. (2). Certain supervision has different effects for Convolutional Networks (ConvNets) and Vision Transformers (ViT). Applying more proper supervision can effectively improve the performance of CLIP. (3). Curtailing the text encoder reduces the training cost but not much affect the final performance. Moreover, we further combine DeCLIP with FILIP, bringing us the strongest variant DeFILIP. The CLIP-benchmark would be released at: https://github.com/Sense-GVT/DeCLIP for future CLIP research.
PDF 7 pages, 1 figures