GAN


2022-03-10 更新

Region-Aware Face Swapping

Authors:Chao Xu, Jiangning Zhang, Miao Hua, Qian He, Zili Yi, Yong Liu

This paper presents a novel Region-Aware Face Swapping (RAFSwap) network to achieve identity-consistent harmonious high-resolution face generation in a local-global manner: \textbf{1)} Local Facial Region-Aware (FRA) branch augments local identity-relevant features by introducing the Transformer to effectively model misaligned cross-scale semantic interaction. \textbf{2)} Global Source Feature-Adaptive (SFA) branch further complements global identity-relevant cues for generating identity-consistent swapped faces. Besides, we propose a \textit{Face Mask Predictor} (FMP) module incorporated with StyleGAN2 to predict identity-relevant soft facial masks in an unsupervised manner that is more practical for generating harmonious high-resolution faces. Abundant experiments qualitatively and quantitatively demonstrate the superiority of our method for generating more identity-consistent high-resolution swapped faces over SOTA methods, \eg, obtaining 96.70 ID retrieval that outperforms SOTA MegaFS by 5.87$\uparrow$.
PDF

论文截图

Machine Learning in NextG Networks via Generative Adversarial Networks

Authors:Ender Ayanoglu, Kemal Davaslioglu, Yalin E. Sagduyu

Generative Adversarial Networks (GANs) are Machine Learning (ML) algorithms that have the ability to address competitive resource allocation problems together with detection and mitigation of anomalous behavior. In this paper, we investigate their use in next-generation (NextG) communications within the context of cognitive networks to address i) spectrum sharing, ii) detecting anomalies, and iii) mitigating security attacks. GANs have the following advantages. First, they can learn and synthesize field data, which can be costly, time consuming, and nonrepeatable. Second, they enable pre-training classifiers by using semi-supervised data. Third, they facilitate increased resolution. Fourth, they enable the recovery of corrupted bits in the spectrum. The paper provides the basics of GANs, a comparative discussion on different kinds of GANs, performance measures for GANs in computer vision and image processing as well as wireless applications, a number of datasets for wireless applications, performance measures for general classifiers, a survey of the literature on GANs for i)-iii) above, and future research directions. As a use case of GAN for NextG communications, we show that a GAN can be effectively applied for anomaly detection in signal classification (e.g., user authentication) outperforming another state-of-the-art ML technique such as an autoencoder.
PDF 47 pages, 7 figures, 12 tables

论文截图

FlexIT: Towards Flexible Semantic Image Translation

Authors:Guillaume Couairon, Asya Grechka, Jakob Verbeek, Holger Schwenk, Matthieu Cord

Deep generative models, like GANs, have considerably improved the state of the art in image synthesis, and are able to generate near photo-realistic images in structured domains such as human faces. Based on this success, recent work on image editing proceeds by projecting images to the GAN latent space and manipulating the latent vector. However, these approaches are limited in that only images from a narrow domain can be transformed, and with only a limited number of editing operations. We propose FlexIT, a novel method which can take any input image and a user-defined text instruction for editing. Our method achieves flexible and natural editing, pushing the limits of semantic image translation. First, FlexIT combines the input image and text into a single target point in the CLIP multimodal embedding space. Via the latent space of an auto-encoder, we iteratively transform the input image toward the target point, ensuring coherence and quality with a variety of novel regularization terms. We propose an evaluation protocol for semantic image translation, and thoroughly evaluate our method on ImageNet. Code will be made publicly available.
PDF accepted at CVPR 2022

论文截图

Contrastive Fine-grained Class Clustering via Generative Adversarial Networks

Authors:Yunji Kim, Jung-Woo Ha

Unsupervised fine-grained class clustering is a practical yet challenging task due to the difficulty of feature representations learning of subtle object details. We introduce C3-GAN, a method that leverages the categorical inference power of InfoGAN with contrastive learning. We aim to learn feature representations that encourage a dataset to form distinct cluster boundaries in the embedding space, while also maximizing the mutual information between the latent code and its image observation. Our approach is to train a discriminator, which is also used for inferring clusters, to optimize the contrastive loss, where image-latent pairs that maximize the mutual information are considered as positive pairs and the rest as negative pairs. Specifically, we map the input of a generator, which was sampled from the categorical distribution, to the embedding space of the discriminator and let them act as a cluster centroid. In this way, C3-GAN succeeded in learning a clustering-friendly embedding space where each cluster is distinctively separable. Experimental results show that C3-GAN achieved the state-of-the-art clustering performance on four fine-grained image datasets, while also alleviating the mode collapse phenomenon. Code is available at https://github.com/naver-ai/c3-gan.
PDF ICLR 2022

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录