2022-03-08 更新
Momentum Contrastive Voxel-wise Representation Learning for Semi-supervised Volumetric Medical Image Segmentation
Authors:Chenyu You, Ruihan Zhao, Lawrence Staib, James S. Duncan
Contrastive learning (CL) aims to learn useful representation without relying on expert annotations in the context of medical image segmentation. Existing approaches mainly contrast a single positive vector (i.e., an augmentation of the same image) against a set of negatives within the entire remainder of the batch by simply mapping all input features into the same constant vector. Despite the impressive empirical performance, those methods have the following shortcomings: (1) it remains a formidable challenge to prevent the collapsing problems to trivial solutions; and (2) we argue that not all voxels within the same image are equally positive since there exist the dissimilar anatomical structures with the same image. In this work, we present a novel Contrastive Voxel-wise Representation Learning (CVRL) method to effectively learn low-level and high-level features by capturing 3D spatial context and rich anatomical information along both the feature and the batch dimensions. Specifically, we first introduce a novel CL strategy to ensure feature diversity promotion among the 3D representation dimensions. We train the framework through bi-level contrastive optimization (i.e., low-level and high-level) on 3D images. Experiments on two benchmark datasets and different labeled settings demonstrate the superiority of our proposed framework. More importantly, we also prove that our method inherits the benefit of hardness-aware property from the standard CL approaches.
PDF
论文截图
Cluster-based Contrastive Disentangling for Generalized Zero-Shot Learning
Authors:Yi Gao, Chenwei Tang, Jiancheng Lv
Generalized Zero-Shot Learning (GZSL) aims to recognize both seen and unseen classes by training only the seen classes, in which the instances of unseen classes tend to be biased towards the seen class. In this paper, we propose a Cluster-based Contrastive Disentangling (CCD) method to improve GZSL by alleviating the semantic gap and domain shift problems. Specifically, we first cluster the batch data to form several sets containing similar classes. Then, we disentangle the visual features into semantic-unspecific and semantic-matched variables, and further disentangle the semantic-matched variables into class-shared and class-unique variables according to the clustering results. The disentangled learning module with random swapping and semantic-visual alignment bridges the semantic gap. Moreover, we introduce contrastive learning on semantic-matched and class-unique variables to learn high intra-set and intra-class similarity, as well as inter-set and inter-class discriminability. Then, the generated visual features conform to the underlying characteristics of general images and have strong discriminative information, which alleviates the domain shift problem well. We evaluate our proposed method on four datasets and achieve state-of-the-art results in both conventional and generalized settings.
PDF