2022-03-07 更新
FP-Age: Leveraging Face Parsing Attention for Facial Age Estimation in the Wild
Authors:Yiming Lin, Jie Shen, Yujiang Wang, Maja Pantic
Image-based age estimation aims to predict a person’s age from facial images. It is used in a variety of real-world applications. Although end-to-end deep models have achieved impressive results for age estimation on benchmark datasets, their performance in-the-wild still leaves much room for improvement due to the challenges caused by large variations in head pose, facial expressions, and occlusions. To address this issue, we propose a simple yet effective method to explicitly incorporate facial semantics into age estimation, so that the model would learn to correctly focus on the most informative facial components from unaligned facial images regardless of head pose and non-rigid deformation. To this end, we design a face parsing-based network to learn semantic information at different scales and a novel face parsing attention module to leverage these semantic features for age estimation. To evaluate our method on in-the-wild data, we also introduce a new challenging large-scale benchmark called IMDB-Clean. This dataset is created by semi-automatically cleaning the noisy IMDB-WIKI dataset using a constrained clustering method. Through comprehensive experiment on IMDB-Clean and other benchmark datasets, under both intra-dataset and cross-dataset evaluation protocols, we show that our method consistently outperforms all existing age estimation methods and achieves a new state-of-the-art performance. To the best of our knowledge, our work presents the first attempt of leveraging face parsing attention to achieve semantic-aware age estimation, which may be inspiring to other high level facial analysis tasks. Code and data are available on \url{https://github.com/ibug-group/fpage}.
PDF Accepted by Transactions of Image Processing. Code and data are available on https://github.com/ibug-group/fpage
论文截图
2022-03-07 更新
FedFR: Joint Optimization Federated Framework for Generic and Personalized Face Recognition
Authors:Chih-Ting Liu, Chien-Yi Wang, Shao-Yi Chien, Shang-Hong Lai
Current state-of-the-art deep learning based face recognition (FR) models require a large number of face identities for central training. However, due to the growing privacy awareness, it is prohibited to access the face images on user devices to continually improve face recognition models. Federated Learning (FL) is a technique to address the privacy issue, which can collaboratively optimize the model without sharing the data between clients. In this work, we propose a FL based framework called FedFR to improve the generic face representation in a privacy-aware manner. Besides, the framework jointly optimizes personalized models for the corresponding clients via the proposed Decoupled Feature Customization module. The client-specific personalized model can serve the need of optimized face recognition experience for registered identities at the local device. To the best of our knowledge, we are the first to explore the personalized face recognition in FL setup. The proposed framework is validated to be superior to previous approaches on several generic and personalized face recognition benchmarks with diverse FL scenarios. The source codes and our proposed personalized FR benchmark under FL setup are available at https://github.com/jackie840129/FedFR.
PDF This paper was accepted by AAAI 2022 Conference on Artificial Intelligence and selected as an oral paper